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EXECUTIVE SUMMARY 

This report addresses a multitude of contemporary issues in highway safety, 

evolving transportation alternatives, and activity and travel behavior modelling. The report 

begins by studying issues relating to big data, traditional data and the tradeoffs between 

prediction and causality in highway-safety analysis. The discussion provided shows that 

the nature of the data, and the implementation target of the analysis means that analysts 

must often tradeoff the predictive capability of the resulting analysis and its ability to 

uncover the underlying causal nature of crash-contributing factors when using traditional 

models, data-driven models, heterogeneity models, or causal inference models. It is 

indicated that a combination machine learning methods and advanced statistical methods 

are the most promising directions for future research. The report then moves on to study 

ridehailing-usage rates where a multitude of factors were found to influence usage 

including self-assessed health, high body mass index, and registration for other shared 

mobility services were all found to play roles in ridehailing usage. The finding show that 

that ridehailing usage tends to be driven by a wide variety of individual characteristics and 

lifestyle choices. 

The report then studies the emerging phenomena of carsharing and specifically the 

renting of personal vehicles, identifying important factors that influence the success of such 

programs, which suggest that supply-side determinants (determining who would be willing 

to rent their vehicles) are critical to future carsharing success. The report then presents a 

study of aggressive driving and a study of the factors affecting work-zone safety to 

highway work zone safety. The finding of this portion of the report underscore the 

importance of capturing unobserved effects (which would include attitudes toward safety, 

and other unobserved factors that would influence injury severities). In addition, the 

findings show the importance of explicitly considering the temporal stability of model-

estimated parameters. 

The report then shifts to the study of electric vehicles and an assessment of the zero-

price effect to estimate a monetary value of free charging. It is argued in the findings that 

for early analysis of free charging policies and pricing structures, the cost-effectiveness of 

the policy should be a greater focus than the exact structure of the policy, so a looser mean-

focus and distribution-focused approach should bring greater value. Next, the report shifts 

to bikesharing behavior during holidays with one of the findings being that federal holidays 

negatively affect bikesharing member ridership and positively affect non-bikesharing 

member ridership. The findings on bikeshare ridership patterns during special calendar 

days have implications for the management of bikeshare systems, local economies, and 

public health. Because of increased non-member ridership on holidays, municipalities and 

bikeshare systems can concentrate information and advertising campaigns around non-

users on holidays. Finally, social capital is explored in relation to leisure activity behavior. 

The findings contribute to a growing interest of considering the effects of social network 

characteristics on activity-travel behavior. As social capital has distinct impacts even 

among homogeneous groups, transportation modelers can derive more refined 

characteristics from social capital measures to build more socially and behaviorally 

realistic models. 

By addressing critical contemporary modeling issues, this report provides practical 

insights into several emerging modeling issues in the transportation field. Insights that can 

form the basis for effective transportation policies.   
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Chapter 1 

 

Introduction 

 

Several critical issues have emerged in recent years in the fields of highway safety, 

alternative transportation modes, and activity and travel behavior modeling. Regarding 

highway safety, there is currently an ongoing methodological debate about the use of data-

driven methods (machine learning, etc.), conventional statistics, statistical models that 

address unobserved heterogeneity, and causality models. This debate has obvious 

transferability to other fields such as activity and travel behavior modeling. Next, mobility 

on demand (ride hailing), bikesharing, electric vehicles, and person-to-person carsharing 

have become disruptive behaviors in travel demand, and this report will provide studies of 

these behaviors as well. Returning to matters of highway safety, there have been several 

recent studies that indicate that driver behavior is changing continuously over time in 

response changing vehicle technologies, changing behavior and utilization of social media 

and texting as well as other temporally shifting factors. This has profound implications for 

highway safety and the development of safety policies and countermeasures. The intent of 

the safety portion of this study is to explore the temporal instability of driver behavior from 

various perspectives including the possible temporally shifting effects of aggressive 

driving and driving behavior in work zones, two elements of driver behavior that are 

believed to be highly unstable over time. Statistical evidence of possible changes in the 

effects of these elements over time can help guide public policy and effect mitigation. 

Finally, this report offers a social capital theory explanation for variety seeking in leisure 

activity behavior. 
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The project report begins by studying issues relating to big data, traditional data 

and the tradeoffs between prediction and causality in highway-safety analysis (Chapter 2). 

The analysis of highway accident data is largely dominated by traditional statistical 

methods (standard regression-based approaches), advanced statistical methods (such as 

models that account for unobserved heterogeneity), and data-driven methods (artificial 

intelligence, neural networks, machine learning, and so on). These methods have been 

applied mostly using data from observed crashes, but this can create a problem in 

uncovering causality since individuals that are inherently riskier than the population as a 

whole may be over-represented in the data. In addition, when and where individuals choose 

to drive could affect data analyses that use real-time data since the population of observed 

drivers could change over time. This issue, the nature of the data, and the implementation 

target of the analysis imply that analysts must often tradeoff the predictive capability of the 

resulting analysis and its ability to uncover the underlying causal nature of crash-

contributing factors. The selection of the data-analysis method is often made without full 

consideration of this tradeoff, even though there are potentially important implications for 

the development of safety countermeasures and policies. This chapter provides a discussion 

of the issues involved in this tradeoff with regard to specific methodological alternatives 

and presents researchers with a better understanding of the trade-offs often being inherently 

made in their analysis. 

Chapter 3 considers various issues related to mobility on demand. The recent 

growth in the popularity of mobility-on-demand (ridehailing) has substantially disrupted 

the transportation market by providing a variety of new transportation options. While new 

mobility-on-demand options have significantly impacted some traditional transportation 
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services (such as taxis), the factors that determine usage rates of new ridehailing options 

are not fully understood. The intent of the current report is to develop a statistical model of 

individuals’ usage rates of ridehailing services. Using a sample of recently collected data, 

a mixed logit model (multinomial logit model with random parameters) of ridehailing-

usage rate was estimated and, in addition to traditional socio-demographic factors, several 

travel and health-related variables were found to play statistically significant roles for 

ridehailing usage. Specifically, age, gender, income, household size, vehicle ownership, 

typical parking time, and the nature of commutes were some of the significant variables 

found in model estimation results. In addition, self-assessed health, high body mass index 

(BMI), and registration for other shared mobility services were all found to play roles in 

ridehailing usage. The results suggest that ridehailing usage tends to be driven by a wide 

variety of individual characteristics and lifestyle choices. 

Chapter 4 looks at the emerging phenomena of carsharing and specifically the 

renting of personal vehicles. The renting of personal vehicles for monetary compensation 

(peer-to-peer carsharing or abbreviated as P2P carsharing) has become increasingly 

popular in the U.S. In applications, the fleet of peer-to-peer carsharing vehicles typically 

consists of personally owned vehicles identified and coordinated by a third-party company. 

However, little is known about the attitudes, perceptions, and decision process through 

which individuals decide to offer their car for rent in such peer-to-peer carsharing. To 

explore individuals’ attitudes and perceptions regarding the act of supplying a personal 

vehicle to peer-to-peer vehicle fleet, a stated preference survey was designed and 

disseminated between February and April of 2018 where survey respondents were asked 

how likely they would be to rent their car (extremely unlikely, unlikely, unsure, likely, 
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extremely likely). The survey questionnaire collected detailed socio-demographic 

information, as well as data on travel behavior and travel patterns. These data were then 

used to estimate a random parameters ordered probit model of their likelihood of renting 

their car. Some of the variables found statistically significant determinants of the 

willingness to rent a personal vehicle were gender, age, income, household composition, 

vehicle ownership, living location with respect to a grocery store, and participation in other 

shared mobility modes. The above findings and especially the gender and income related 

variables were found to complement prior literature and offered additional layer of 

understanding of the factors determining the supply side of peer-to-peer carsharing. The 

findings of this study offer some initial insights into the factors that may determine the 

success or failure of this novel transportation alternative. 

Chapter 5 turns to the area of safety and specifically modeling issues relating to 

aggressive driving. Aggressive driving has become a national traffic-safety concern, with 

increasing congestion and other stress-inducing factors making it more likely drivers take 

out their frustrations by driving aggressively. Looking at single-vehicle crashes, this study 

investigates differences between resulting crash-injury severities when aggressive and non-

aggressive driving behavior is observed, and how these differences changed over time. 

Using three years of crash data from 2015 to 2017 (inclusive), random parameters 

multinomial logit models with unobserved heterogeneity in means and variances were 

estimated. The available crash data included a wide variety of factors known to influence 

driver-injury severity including data related to the crash, vehicle, driver, spatial and 

temporal characteristics, roadway attributes, and traffic volume. Model estimates show that 

there were significant differences in driver-injury severities resulting from aggressive and 
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non-aggressive driving, and that the effect of factors that determine injury severities 

changed significantly over time (statistically significant temporal instability). However, it 

is noteworthy that crashes involving non-aggressive drivers had many explanatory 

variables that produced temporally stable marginal effects, whereas crashes involving 

aggressive drivers had only one such variable (restraint belt usage). This suggests the 

possibility that temporal instability found in many recent safety studies may be driven by 

a subset of the crash population, and that there may be temporal stability in many crashes. 

Exploring this possibility is a promising direction for future empirical investigation. 

Chapter 6 continues the safety emphasis by looking at issues relating to work zone 

safety, a critical issue with likely nationwide infrastructure initiatives. In the state of 

Florida, work-zone related crashes and their resulting injury severities have been increasing 

recently, particularly over the 2015 to 2017 time period. In the current study, we seek to 

provide insights into the factors that have been influencing this trend. Using work zone 

data from the 2012 to 2017 time period, resulting driver-injury severities in single-vehicle 

work zone crashes were studied using random parameters logit models that allow for 

possible heterogeneity in the means and variances of parameter estimates. The available 

data included a wide variety of factors known to influence driver injury severity including 

data related to the crash characteristics, vehicle characteristics, roadway attributes, 

prevailing traffic volume, driver characteristics, and spatial and temporal characteristics. 

The model estimates produced significantly different parameters for each of the year from 

2012 to 2017, and a fundamental shift in unobserved heterogeneity, suggesting statistically 

significant temporal instability. In addition, in several key instances, the marginal effects 

of individual parameter estimates show marked differences between one year and the next. 
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However, these findings may not be the sole result of variations in driver behavior over 

time as has been argued in past research that has found temporal instability. This is because 

each work zone has a unique set of characteristics and, with the sample of work zones 

changing from one year to the next as highway maintenance and construction is undertaken 

in different locations, this work-zone sample variation could be a substantial source of the 

observed temporal instability. 

Chapter 7 shifts to a behavioral analysis of the zero-price effect phenomenon. Over 

the past decade, electric vehicles have become a viable alternative to standard combustion 

engine vehicles. Prior research has shown that a short-term free public charging program 

could possibly increase plug-in electric vehicle sales, decrease oil consumption, and 

decrease greenhouse gas emissions. To deepen the understanding of consumer behavior 

relating to free charging, this research aims to analyze the zero-price effect to estimate a 

monetary value of free charging. To arrive at accurate estimation, data from stated 

preference survey were used to estimate latent class models of attribute non-attendance. 

The values calculated via different computations methods were then compared. The 

national mean zero-price effect for public charging ranged from $0.95 to $1.40 across the 

models. Because the collected sample was correctly weighted and national 

representativeness was achieved, the findings from this work can help to assess policies 

which offer free public charging infrastructure. This work can give more insights into how 

much value drivers may place on zero-cost vehicle charging. 

Chapter 8 provides an analysis of bikeshare behavior during holidays. Bikeshare 

provides important first mile last mile, commuting, circulation, and sightseeing options in 

many cities. Bikeshare can also be healthy and convenient for users. Throughout the year, 
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holidays occur which change typical bikeshare activity patterns. Existing literature shows 

mixed results relating to the ridership impacts of holidays, as some research shows that 

these days may result in higher ridership, while others show no effect. Because of 

variations in system locations and modeling methods, it is difficult to determine the reasons 

for these mixed results. To control for these aspects, this project consists of a multi-city 

study of the effect of holidays on system-level ridership using a log-linear regression model 

with robust standard errors. The results show the impacts of holidays on bikeshare system 

ridership for different user types among systems in the Washington D.C., Chicago, Boston, 

Los Angeles, and Minneapolis metro areas. Several hypotheses are built and tested for 

examining the expected effects of holidays on bikeshare usage. A major finding from this 

study is that federal holidays negatively affect member ridership and positively affect non-

member ridership. It was also found that different federal holidays have dissimilar effects 

on total ridership. These findings could be useful for bikeshare agencies to plan, reposition 

fleets, and improve system operation. 

In Chapter 9, social capital is explored in relation to leisure activity behavior. 

Transportation research has paid deeper attention to exploring factors affecting leisure 

activities and their induced travel. Motivated by the influence of social capital on leisure 

activity behavior, this report proposes a theory that leisure activity variety is an 

instrumental outcome and thus mostly affected by instrumental social resources. The 

theory underlines two hypotheses that 1) social capital is an integral determinant of leisure 

activity participation, and 2) having access to instrumental social support promotes 

instrumental outcomes demonstrated by increased leisure activity variety. This theory was 

comprehensively tested on the number of different unique leisure activities collected from 
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1,297 survey respondents. To the authors’ knowledge, this refined and specially designed 

survey is the first in the transportation literature to use both position generator and resource 

generator to measure social capital. Results from negative binomial regression models 

demonstrated that instrumental support indeed had the largest influence on predicting 

activity variety outcome. This study’s findings helped to reduce the biases and unobserved 

heterogeneity across various socioeconomic attributes. As social capital has distinct 

impacts even among homogeneous groups, transportation modelers can derive insights 

from social capital measures to build more socially and behaviorally realistic models. 
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Chapter 2 

 

Big Data, Traditional Data and the Tradeoffs between 

Prediction and Causality in Highway-Safety Analysis 

 
Fred Mannering, Chandra Bhat, Venky Shankar, Mohamed Abdel-Aty 

2.1. Introduction 

The implicit assumption in traditional statistical analyses is that an appropriately 

estimated model will both uncover causal effects and have the highest possible prediction 

accuracy. But the recent development and application of data-driven methods, as well as 

issues of causality in traditional statistical modeling, suggest that safety analysts must 

often, even if not always, make a trade-off between prediction accuracy and uncovering 

underlying causality. That is, models that predict well may not be the best at uncovering 

causality, and models that are good at uncovering causality may not be the best for practical 

prediction purposes. 

There are four general methodological approaches that are potentially suitable for 

the analysis of transportation safety data: traditional statistical models, 

endogeneity/heterogeneity models, data driven methods, and causal inference models.1 

Each of these models have an implicit trade-off between practical prediction accuracy and 

their ability to uncover underlying causality. Traditional statistical models, such as those in 

the Highway Safety Manual (AASHTO, 2010), use conventional statistical methods with 

limited data (data that is readily available to most safety practitioners) to predict the effect 

 
1 Causal inference models have become a key analytic approach in the economics field and have been 

gaining in interest among transportation researchers. However, the complexities of applying the approach 

in the complex behavioral arena of transportation-related decision making are an ongoing concern 

(Brathwaite and Walker, 2018). 



 

20 
 

of various safety improvements on accident risk. The traditional literature (such as that 

supporting the Highway Safety Manual) claims predictive capabilities and causal 

explanations, but generally lacks fundamental support for these claims via assessments of 

parameter bias (for example, potential biases in parameter estimates and estimates of 

standard errors). Predictive capabilities of traditional highway-safety models are typically 

based on assessment of aggregate counts (total count of accidents for example), and there 

is scant support for true tests of predictability (such as tracking observational predictions 

against observed counts several years ahead of the estimated models). In fact, claims of 

predictive ability in many traditional models are limited in credibility, in large part due to 

temporal instability in parameters (Mannering 2018). Similarly, claims about causal ability 

in the traditional safety literature are limited because the true range of influential factors 

on accident likelihoods is unknown. Missing data problems, problems of consistency of 

measurement, and variation in unobserved effects due to economic, socio-demographic and 

vehicle characteristics amplify the potential bias in estimation.  

To address some of the limitations above, endogeneity models (see Bhat et al., 

2014) and heterogeneity models (see Mannering et al., 2016 for a thorough review) have 

been developed to extend traditional safety models by using advanced statistical and 

econometric methods. Endogeneity models account for the potential endogeneity of a 

safety-related variable when attempting to extract the “true” causal effect of the variable 

on a primary safety outcome variable of interest, after accommodating “spurious” 

associative effects or correlation effects between the variables. Unobserved heterogeneity 

models control for unobserved factors that may influence the likelihood and resulting 

injury severities in accidents. Endogeneity models and heterogeneity models are stylized, 
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in that they are based on relatively limited datasets where the range of the potential 

endogenous and explanatory variables is much larger than widely available transportation 

highway data. A richer set of variables can potentially improve predictive capability and 

understanding of causality; however, the increased model complexity creates an additional 

burden on model transferability and predictive validation. Model complexity also poses 

challenges in estimation due to computational constraints. Estimation of highly complex 

endogeneity models and heterogeneity models involves simulation-based methods or 

analytic approximation methods due to the numerical integration needed to capture 

unobserved effects. While there has been substantial progress in such methods in the recent 

past (see, for example, Bhat, 2018), the required estimation techniques can still present 

dimensionality challenges for large accident datasets.  

Data-driven methods include a wide range of techniques including those relating to 

data mining, artificial intelligence, machine learning, neural networks, support vector 

machines, and others. Such methods have the potential to handle extremely large amounts 

of data and provide a high level of prediction accuracy. On the downside, such methods 

may not necessarily provide insights into underlying causality (truly understanding the 

causal effects of specific factors on accident likelihoods and their resulting injury 

probabilities).2  

Finally, causal-inference models explicitly recognize that accidents are only 

observed for a portion of the driving population and that this can lead to erroneous 

interpretations of findings (more on this below). Causal-inference models have rarely been 

 
2 Some insight into the influence of specific variables in data-driven methods can made through simulation 

and calculating factors such as Gini Index, but this may not necessarily provide insight into underlying 

causality. 
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applied in the accident analysis literature, but such approaches in other fields base these 

models on time series data to identify causal effects. However, causal-inference models 

have weak predictive capabilities because, among other reasons, they typically are not 

based on individual-accident level data and thus address a limited number of explanatory 

variables. Besides, the time-series nature of these models, while supposedly providing 

more basis for inferring causality, raises additional issues about the possible presence of 

uncontrolled factors that change during the intervening periods of time thereby potentially 

tainting the presence and estimated extent of causation.  

Figure 2.1 presents a graphic of the trade-offs associated with these methods 

regarding predictive capability, causal inference capability and big data suitability (the 

ability of the methods to address problems that involve large amounts of data.) The choice 

of one method over another often involves several important considerations that go beyond 

a simple tradeoff between prediction and causality. Each of these four methods (data-driven 

versus causal versus traditional versus endogeneity/heterogeneity models) involve 

different levels of data. In addition, the application of the model (modeling purpose) needs 

to be considered as well. For example, endogeneity models and heterogeneity models 

would seem to be superior to traditional models in both prediction and causality; however 

these models typically use highly detailed datasets, and the models are complex in their 

application. In contrast, traditional safety models have relatively modest data requirements 

that are easy to apply, but their utility comes at the expense of a loss of predictive capability 

and lack of insight into causal influences (with the added risk of biased inference).  
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Figure 2.1. Current modeling trade-offs between big-data suitability, predictive capability, 

and causality/inference capability. 

 

 

With extremely large datasets (big data) such as those that might be available in 

naturalistic driving studies, traditional models, advanced endogeneity/heterogeneity 

models, and causal effect models can be challenging to estimate, often making data-driven 

methods the preferred approach. In fact, data-driven methods can cover a wide range of 

data sizes, but, with smaller data sizes, the advantages of other methods to uncover 

causality tend to be preferred among analysts. Also, data driven methods may not be 

adequately complemented with domain expertise, resulting in inference driven primarily 

by statistical reasoning. The advent of artificial intelligence (AI) methods and the explosive 

growth of AI potentially opens the door for introducing some level of “automated” domain 

expertise to fine-tune data driven models that are developed strictly by statistical reasoning. 

But, at the end, human judgement and domain expertise are still likely to be needed in some 
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form, especially in the context of driving the formulation of models of causal inference, 

since directional relationships between variables are formulated based on apriori 

knowledge of influential factors. As an example, in big data problems studying the impact 

of factors affecting fatality likelihoods, sample size is a significant issue. Fatalities on 

average occur at the rate of roughly 0.6 percent of all reported accidents. To extract 

meaningful policy, very large amounts of driving data are required to develop a sample size 

of non-traditional variables (for example, relating to impaired driving, access to taverns, 

breweries and pubs along commuter routes and proximity of these locations to drivers’ 

residences). In a purely data-driven model, this insight will not be extracted because the 

database may not initially contain distances from breweries, taverns, and pubs to commuter 

routes. If one were to estimate a model of fatality likelihoods, domain expertise helps fine-

tune a data driven model to include distances and therefore measures of “access” to 

undesirable effects, since the likelihood of alcohol-impaired driving has a well-known 

causal effect on fatalities. There is also anecdotal and published evidence in the literature 

that correlates higher fatality rates with robust economic outlook. The contextual 

awareness value of domain expertise is therefore lacking in models that are developed on 

pure statistical reasoning. Therefore, it can be reasoned that big data models (and data 

driven models in general) could potentially suffer from a model-based data-definition 

disconnect which can cause issues relating to the identification of relevant variables and 

potential “missing data” issues. While some of this disconnect may be addressed by 

automated and trained AI systems, human involvement by way of domain expertise and 

judgment will still remain a requirement.  

The discussion above raises an important issue. If the goal of big data modeling is 
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to provide added insight, then the burden of proof lies in the quality of statistical 

information extracted from those models. In this sense, big-data modeling is not merely an 

exercise in techniques that accommodate large amounts of data or simply draw associations 

among variables, but the predominant burden of proof lies in the ability of these models to 

provide higher-quality inference (“big” inference). The example of drunk-driving fatalities 

described above is one example of big inference that can be limited without a basic 

understanding of the sources of unobserved heterogeneity. Another example of limited 

inference from big data relates to not adequately making efforts to disentangle causation 

from correlation, leading to a comingling of the two that can lead to misinformed policy 

actions (more on this later). These issues can be described as limited big inference in the 

absence of model-based data definitions using domain expertise. On the other hand, big-

data inference can bring in variables that can serve as a source of heterogeneity due to 

scale. For example, if one were to estimate driving risk models based on naturalistic driving 

datasets, several non-traditional fine-resolution variables can become available for 

modeling, such as lane offsetting variables or vehicle kinematic measures such as pitch, 

yaw, and roll.  

Figure 2.1 suggests that the future of big data applications in traffic safety modeling 

lies at the intersection of strong domain knowledge and quality of extraction of statistical 

information, and this intersection is heavily influenced by methods that attempt to uncover, 

to the extent possible, causal effects (after controlling for sources of correlation) and 

unobserved heterogeneity. Therefore, as a baseline for further evaluation of big data and 

data driven models, endogeneity models and heterogeneity models can potentially serve as 

useful tools for both model selection and model definition purposes.  



 

26 
 

Given the above discussion, with data size and application limitations, what are the 

potential consequences of trading off predictive capability to understand causality and what 

factors will compromise our understanding of causality to get better predictive capabilities? 

Various aspects of this tradeoff are discussed in the following sections, after first discussing 

causality considerations in safety modeling. In the rest of this chapter, we do not discuss 

causal inference models because, as already indicated, these models have rarely been 

applied in the accident analysis literature and are not typically based on individual-accident 

level data.  

 

2.2 Causality versus Other Explanations in Relationships 

The difference between causality and other possible relationship structures 

involving variables will always be important from a policy action perspective and from the 

behavioral perspective of improving safety. This is an issue that has been long discussed 

and remains an important consideration as we enter a “big data” landscape. One possible 

reason for causality being incorrectly inferred may simply be the fact that the sample being 

used in safety analysis is itself not representative of the larger population, and thus a 

relationship estimated for a specific sample may not reflect “true” causal relationships in 

the larger population. For example, the use of observed accidents, and particularly data 

conditioned on an accident having occurred, can be potentially problematic for both 

accident occurrence likelihood and injury-severity statistical modeling because individuals 
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involved in accidents may not be a random sample of the population.3 That is, the fact that 

less-safe drivers will be over-represented could potentially present a transference problem 

of the relationship to the population at large. Further, less-safe drivers may be particularly 

over-represented in specific types of accidents. To see the problem more clearly, consider 

a statistical model of the resulting accident-injury severities on a mountain pass. A study 

of this problem may conclude that high snow accumulations increase the resulting injury-

severities in crashes. Injury severity will be known only after a crash has occurred, so it is 

conditional on a crash having occurred. However, due to the substantial increase in risk 

involved in driving in snow-related conditions, some drivers may choose to take other 

modes of travel or avoid traveling adverse weather. Thus, it is possible that the individuals 

who continue to drive over the mountain pass in adverse conditions are self-selected drivers 

with risk profiles significantly different from the driving population as a whole. This makes 

the interpretation of the high-snow-accumulation variable challenging. The variable’s 

estimated parameter could be picking up the actual effect of the snow or merely picking up 

the unique risk characteristics of the drivers who continue to drive in snowy conditions. It 

is also possible this effect could be much more subtle than this extreme weather case. For 

example, safe drivers may avoid dangerous roadway sections or dangerous intersections 

with specific types of traffic controls by choosing alternate routes than drivers with less of 

a concern for safety (see, for example, Bhat et al., 2014). In such situations, estimating 

models on observed crash data will tend to overstate the risk of dangerous roadway 

 
3 The authors gratefully acknowledge Clifford Winston of the Brookings Institution for identifying this 

potential issue in traditional safety modeling, and subsequent discussions. There are also the related 

issues of endogeneity (Bhat et al., 2014) and of under-reporting of accidents, particularly less severe 

accidents. That is, minor accidents are less likely to be reported to police, which in turn affects what the 

analyst sees as observed accidents. This has been shown to create model estimation problems as 

discussed in Mannering and Bhat (2014). 
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segments and intersections because these roadways tend to have drivers with higher risk 

than the overall driving population. Some studies have considered only severe accidents 

(such as fatalities) thereby potentially compounding the problem because the sample is 

further restricted making less-safe drivers even more over-represented in the sample.  

Another possible, and broader, reason why causality is co-mingled with other 

associative effects is that many of the explanatory variables used in accident-likelihood and 

injury-severity models could be viewed as endogenous, causing inconsistent parameter 

estimates and compromising the interpretation of the statistically estimated parameters 

(Washington et al., 2011, Abay et al., 2013). For example, seat belt use may be endogenous 

to injury severity. In other words, individuals who do not wear seat belts may be 

overrepresented in severe injuries (conditional on an accident), but this may be because 

those who do not wear seat belts are intrinsically aggressive drivers and this aggressive 

driving itself may contribute to severe injuries. Thus, one may have to consider seat belt 

use as an endogenous variable to determine the true causal engineering benefit of seat belt 

use in preventing serious injuries conditional on an accident. Importantly, such 

considerations are not merely esoteric scholarly pursuits, but are very germane to assessing 

the potential effectiveness of various countermeasures and selecting priority measures. In 

the next few sections, we discuss the ability to investigate causality effects from different 

types of data/methods.  

 

2.3. Causality and the Nature of Traditional Accident Data  

Of all the many safety-related studies that have been undertaken over the years, 

those that are based on police-reported accident data have formed the primary basis for 
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developing statistical models to help guide specific safety-related highway and traffic-

control improvements. Over the years, the analyses of these data have become increasingly 

sophisticated, evolving from simplistic regression analyses to highly sophisticated 

endogeneity/heterogeneity methods. Although the front-line statistical methods used to 

analyze these data are the mainstay of academic journals, from an application perspective, 

the culmination of this research is embodied in the Highway Safety Manual (AASHTO, 

2010). The Highway Safety Manual approach is based on police-reported vehicle accident 

data and has used that empirical basis to provide a practical and readily accessible way of 

quantifying the likelihood of safety-related impacts of specific highway improvements. 

With regard to the likelihood of accidents, using police-reported accident data, 

studies commonly seek to model the number of accidents occurring on a highway entity, 

such as a segment of highway or intersection, over some specified time period using count-

data or other statistical methods (Lord and Mannering, 2010). Explanatory variables may 

include roadway characteristics such as traffic volume, lane widths, pavement friction, 

highway grade and curvature, and so on. Regarding the injury severity of accidents 

(occupant injury levels such as no injury, possible injury, evident injury, disabling injury, 

and fatality), discrete-outcome statistical methods are typically applied (Savolainen et al., 

2011). Information on injury severity is available only after an accident has occurred (thus 

conditioned on an accident having occurred). Using data conditioned on the fact that an 

accident has occurred, the explanatory variables can be expanded from the highway-

segment data used in the accident-likelihood models to include accident-specific variables 

such as seat-belt use, blood-alcohol level of drivers, weather conditions at the time of the 

accident, and so on.  
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As discussed earlier, the use of observed accidents, and particularly data 

conditioned on an accident having occurred, can be potentially problematic. For sure, the 

possibility of such selectivity would make the interpretation of the parameters difficult, 

specifically for weather-related parameters and more so for some modes of highway travel 

(for example, motorcyclists are particularly likely to self-select in rain and snow as 

discussed in Mannering, 2018). More importantly, for forecasting with models estimated 

with traditional police data and even other real-time data, anything that would shift the self-

selectivity of road users in adverse weather or on unsafe routes would result in inaccurate 

predictions. As examples of this self-selectivity shift, newer vehicles with advanced safety 

features may make drivers more confident in adverse weather conditions, thus changing 

the mix of drivers in such conditions. Regarding route choice, safe drivers may seek to 

avoid dangerous roadway segments and intersections, but as congestion increases, they 

may alter their travel routes as they trade off time and safety and this, in turn, could change 

the mix of drivers on specific roadway segments. 

Methods to attempt to control for self-selectivity and related considerations are 

discussed in the next section. Data requirements and econometric complexities to 

implement these procedures for accident data analysis can be formidable obstacles. To 

circumvent data barriers, many economists have sought more simplistic causal-inference 

approaches to address identification issues and uncover causality, particularly with the 

application of ordinary least-squares regressions to choice applications (Dale and Krueger, 

2002). This is generally done by using control variables such as indicator variables and 

fixed effects, with the intent of achieving the equivalent of a randomized trial where self-

selectivity and endogeneity can be strictly eliminated (Angrist and Pischke, 2009; 2015; 
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2017). However, the generalizability of the fixed-effects results can be questionable, and 

even in a truly randomized trial likely temporal shifts in observed behavior can make 

prediction problematic with ongoing temporal variations inducing unknown errors in fixed 

effects (Mannering, 2018). In the relatively complex non-linear models of the likelihood 

and severity of highway crashes that include many explanatory variables relating to 

roadway characteristics, traffic conditions, weather conditions, and vehicle and driver 

characteristics, identification of control variables and their incorporation into the model is 

much more challenging than the more aggregated-data methods applied by economists to 

address this problem. In addition, predictive application can be quite limited because the 

variables used as controls may also be of interest for predictive purposes. It is important to 

note that even analyses that consider the likelihood of an accident, such as accident 

frequency models, that typically include roadway characteristics and do not include any 

driver characteristics, are still potentially affected by selectivity. For example, safe drivers 

may choose to avoid roads with certain characteristics so the observed accidents on specific 

roads may not be drawn for a random sample of the driving population. Thus, an estimated 

parameter for a dangerous curve could theoretically be overstated since high-risk (more 

accident-likely) drivers may be overrepresented on that curve.4 

The potential bias that selectivity introduces and the effect it may have on 

prediction is not fully understood, though evidence of the potential biases due to ignoring 

self-selection has been presented in Shin and Shankar (2013) in an analysis of accident 

severity likelihoods. But, as pointed out in Mannering (2018), the issue is likely to be very 

context dependent. For instance, because everyone has a chance of being involved in an 

 
4 While such road selectivity among safe drivers may exist, the authors are unaware of any studies that have 

quantified this effect.  
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accident (even the safest drivers), it may be that an accident data sample collected just so 

happens to include the full spectrum of individuals from the safest to the least safe. In 

addition, when considering the injury severities in an accident, it is not clear whether the 

drivers observed in accidents will have more severe injuries, less severe injuries, or about 

the same injuries relative to drivers not observed in accidents. For example, drivers 

frequently appearing in accident data bases may get involved in more accidents of lower-

injury severity than those less frequently involved in accidents. It is also important to note 

that in the cases just mentioned, the resulting injury severities are fundamentally different 

from traditional endogeneity applications that often have an outcome determined by a 

choice. In the case of vehicle accidents, once various driver actions are taken, the resulting 

injury severity is determined by physics where forces are transferred through the vehicle 

to its occupants (though even the physics involved in the crash are influenced by underlying 

risk profiles of the driver including vehicle choice and other factors). However, 

endogeneity of variables in accident data, where the self-selection is based on a choice 

(such as wearing seat belts or not, or whether a motorist decides to drive at all or not in 

severe weather, or where traffic engineers choose to place specific types of traffic control 

devices, or where engineers decide to place additional lighting), is likely to be a more 

serious issue, as has been demonstrated by Eluru and Bhat (2007), Oh and Shankar (2011),  

and Bhat et al. (2014).  

What is clear, is that selectivity of any form (based on human choice or otherwise) 

should certainly be considered in the interpretation of any model results that use traditional 

accident data (data that only includes accident-involved individuals), and even naturalistic 
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driving and observed traffic data since selectivity on safe and less-safe routes could be a 

factor.  

 

2.4. Endogeneity, Unobserved Heterogeneity and Causality 

As just discussed, traditional statistical approaches to the analysis of highway safety 

data (based on observed accident data) have struggled with a variety of statistical issues, 

most notably endogeneity bias and omitted variables bias, because traditional statistical 

methods are often estimated with limited data for practical reasons. Despite these 

limitations, traditional models have the advantage of being accessible and easily applicable, 

and they have had a measurable real-world impact on highway safety practice. 

Nonetheless, traditional methods can be substantially enhanced in their value by 

recognizing elements of endogeneity and unobserved heterogeneity.  

Endogeneity considerations (including those involving self-selectivity as discussed 

earlier) may be handled in one of two broad ways (for more details, please see Bhat and 

Eluru, 2009). One approach is based off Heckman’s seminal work in the 1970s (Heckman, 

1979), and has been extended to numerous transportation applications that have been 

undertaken over the years (for reviews see Mannering and Hensher, 1987; Washington et 

al., 2011). In particular, using variations of Heckman-style methods, transportation 

applications have considered a number of issues in this regard, such as selectivity bias 

corrections for vehicle usage models (Mannering and Winston, 1985; Mannering, 1986a, 

1986b; Oh and Shankar 2011; Shin and Shankar 2013), which are needed because, for 

example, individuals that own newer vehicles (which are capable of being driven more 

with fewer repairs) are a non-random, self-selected sample of higher-use vehicle owners. 
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There has also been work with selectivity-bias corrections for average speed by route 

(Mannering et al., 1990), with the idea being that drivers attracted to specific routes are a 

non-random sample (for example, faster drivers may be more likely to take freeways and 

slower drivers may be more likely to take arterials). The basis of the Heckman-style 

approach is to start with a probabilistic model that captures the selectivity process and then 

to incorporate the probability of the outcomes under consideration to correct the bias in the 

model that estimates the magnitude of the outcome. In the case of safety research, this 

would presumably start with a model that considered individuals’ overall probability of 

being accident involved (or, following the weather-related example earlier, the probability 

of a motorist driving in adverse weather), and then use this to correct statistical models to 

the overall frequency and severity of crashes as gathered from observed accidents. 

However, classic Heckman-style selectivity corrections are manageable because the 

equation being corrected is a simple linear model with a continuous variable (vehicle usage 

in miles driven per year, average speed in miles per hour, etc.). In the analysis of accident 

data, the likelihood of an accident and its resulting injury severities are typically modeled 

using non-linear count-data and discrete outcome models (Lord and Mannering, 2010; 

Savolainen et al., 2011), which makes a Heckman-style selectivity correction (using control 

function approaches) an econometric challenge, particularly if unobserved heterogeneity 

and other more advanced econometrics are involved in the model as well (Mannering and 

Bhat, 2014; Mannering et al., 2016).  

Another approach to handling endogeneity is inspired by the work of Heckman 

(1974) and Lee (1983). Rather than use a two-step Heckman type approach, this second 

approach models the potential endogenous variable jointly with the outcome of interest. 
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While this second approach has been used in a general transportation context for a long 

time (see Hamed and Mannering, 1993, Bhat, 1996, and Bhat, 1998), the approach has only 

been relatively more recently applied to models in the safety literature (Eluru and Bhat, 

2007, Bhat and Eluru, 2009, Oh and Shankar 2011, Spissu et al., 2009, Pinjari et al., 2009, 

Abay et al., 2013, and Bhat et al., 2014). Thus, for example, by modeling seat belt use as 

well as injury severity in a joint model system (allowing for correlation in the error terms 

of the underlying equations determining these discrete outcomes, say because of 

aggressive/risky driving behavior), one can estimate the remaining “true” causal effect of 

seat belt use on injury severity (addressing also the situation that aggressive drivers are 

likely to be over-represented in accident-only data). Importantly, through the use of copula 

methods employed in some of the more recent applications listed earlier of the joint 

approach, a variety of parametric distributions may be used to characterize the nature of 

the joint distribution of the errors in the joint system. While the Heckman-type control 

function approach is generally considered to be more robust to miss-specification of the 

error distributions, this issue is at least assuaged in the joint model system by testing 

different distributions forms through copulas and selecting the best fit copula (see 

Mannering and Bhat, 2014). Further, the joint model system is estimated in a “one-shot 

deal” and does not incorporate corrections for the standard errors as needed in the second 

step of Heckman-type methods. The joint model approach also technically does not need 

the a priori identification of an instrument variable that affects the selection equation (seat 

belt use in the example above) but not the outcome equation (injury severity) because 

identification is facilitated through the assumed parametric distribution of the error terms. 

However, for stability purposes, having at least one variable affecting the selection 
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equation but not the outcome equation is helpful even in the joint model approach, and 

such exclusion restrictions can be determined through empirical estimations.5   

While endogeneity models attempt to account for self-selectivity and related 

broader jointness issues, heterogeneity models (including random parameters models, 

latent class models and others) recognize the presence of countless factors that are unlikely 

to be observed by the data analyst (unobserved heterogeneity) and that influence accident 

likelihoods and resulting injury severities, despite the presence of a large number of 

potential explanatory variables. Because heterogeneity models have been the focus of an 

entire paper recently in the safety field (see Mannering et al., 2016), we do not expend too 

much space discussing the motivation and methods for such models here. But, using the 

random parameters application as an example, these heterogeneity models allow the effect 

of explanatory variables to vary from one accident to the next and from one roadway to the 

next in (or other units of observation for accident analysis, such as drivers, counties, 

vehicles, etc.). This can account for a vast variety of unobserved factors and can also 

potentially mitigate the selectivity issue (that riskier drivers will be over-represented) by 

giving different parameter values to different observations. However, restrictive 

distributional assumptions are often made, and prediction can be challenging due to the 

complexity of the models and the observation-specific estimated parameters. In the process 

of incorporating unobserved heterogeneity through random-parameter type specifications, 

it is important that observed heterogeneity not be given less attention. From a causality and 

 
5 Identification ensures the parameters of interest are uniquely estimable (see for example, Manski 1995; 

Manski 2009). Lavieri et al. (2016), based on the Generalized heterogeneous data model (GHDM) of 

Bhat (2015), extend this joint modeling approach by using a small set of common latent stochastic 

constructs affecting multiple outcomes to generate a parsimonious covariance matrix across the multiple 

outcomes.  
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policy insight perspective, it is critical that all sources of observed heterogeneity (through 

observed exogenous variables) be tested and specified first, and unobserved heterogeneity, 

as referred to in our label of “heterogeneity models”, be included to recognize the inevitable 

presence of the moderating effect of unobserved factors after accommodating for the 

presence of observed heterogeneity, rather than in-lieu of observed heterogeneity.  

 

2.5. Data Driven Methods, Big Data and Causality 

Due to the structure of the models and estimation procedures, traditional statistical 

models and endogeneity/heterogeneity models have difficulties in processing very large 

amounts of data (big data). There are a number of data driven methods that have been 

applied to the analysis of accident data with the intent of uncovering correlations and 

developing accurate predictive models. Still, the field of accident analysis is ripe for 

additional applications of non-regression data-driven methods (which are often free from 

standard parametric assumptions used in traditional regressions). The class of non-

regression methods is fairly broad, inclusive of: instance-based algorithms (such as K-

nearest neighbor, or support vector machines, etc.); regularization algorithms (such as the 

least absolute shrinkage and selection operator); decision tree algorithms (such as 

classification and regression trees); Bayesian networks (such as naïve Bayes and Bayesian 

networks among others); clustering (K-means, expectations-maximization, etc.); 

association rule algorithms; artificial neural networks (such as back-propagation and 

stochastic gradient descent); deep learning algorithms (such as the convolutional neural 

network, deep belief network, etc.); dimensionality reduction algorithms (such as principal 

component analysis and its variants); ensembling algorithms (such as boosting and 
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bagging, random forests); feature selection algorithms, reinforcement learners, natural 

language processing, and so on. In accident analysis, for example, outside of the numerous 

studies on regression applications, support vector machines have been employed (Li et al., 

2008) for the estimation of both frequency and severity outcomes (Li et al, 2008; Li et al, 

2011). In addition, artificial neural networks (Abdelwahab and Abdel-Aty, 2001; Abdel-

Aty and Pande, 2005; Chang 2005; Delen et al., 2006; Abdel-Aty et al., 2008;), support 

vector machines (Li et al., 2008; Yu and Abdel-Aty, 2013), Bayesian networks (Hossain 

and Muromachi, 2012; Sun and Sun, 2015), classification and regression trees and 

hierarchical tree-based regression (Karlaftis and Goulias, 2002), Bayesian neural networks 

(Riviere et al., 2006; Xie et al., 2007), deep belief networks (Pan et al., 2017) and 

classification trees (Pande and Abdel-Aty, 2006a,b) have been applied to evaluate real-time 

crash risk. 

While the “universe” of data-driven methods is rich for application to accident 

analysis, several limitations exist relative to traditional econometric and statistical 

methods. Better prediction is a potential benefit; and the field of statistical reasoning has 

provided excellent tools for improved “curve fitting” of observations in a fundamental 

sense. However, questions still remain regarding the appropriate measures of the inferential 

quality of the data-driven algorithms. First and foremost, among the measures, is the 

measure of “why?” Are the variables extracted from the data-driven methods able to 

provide insight into cause and effect that are robust over time, and transferable to other 

domains? The current answer is that to date no data-driven method has been shown to 

provide true cause and effect and true cause-and-effect transportability to another domain 

of search. That is, for example, even if the training dataset was exhaustively analyzed to 
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reveal purported cause and effect, the algorithm would more than likely fail in a different 

learning scenario with a very different set of hidden causal relationships. Transfer learning, 

domain adaptation and intelligent causal rule generation are still well beyond the reach of 

the big-data/AI claims that are published in the literature. 

Most existing applications of data-driven methods in the accident-analysis field 

have also not really dealt with big data (where data-driven methods become the dominant 

approach), but instead have dealt with data sizes that place them in direct competition with 

other traditional statistical techniques. With traditional data sets (in terms of size), 

sophisticated forms of these data-driven methods have been shown to predict accident data 

with comparatively high accuracy (earning high predictability marks in Figure 2.1). 

However, the inability to uncover causality and provide substantive inferences has been a 

historical weakness of these approaches, often earning them a “black-box” designation 

because of the difficulty of unraveling how specific elements might influence predictions 

with these approaches (giving it low marks for causality in Figure 2.1). While data-driven 

methods are likely to become increasingly popular with the emergence of truly high 

dimensional big-data in transportation safety (National Academies, 2013), the fundamental 

limitations relating to causality must still be given consideration in the interpretation and 

application of results. The bottom line is that, while data-driven methods may do well in 

capturing associations between one variable and another (that is, how variation in a variable 

influences another variable), they do not intrinsically study the issue of what exactly is the 

root cause of why variation in one variable influences another variable. While one could 

claim that this is the same even with traditional “structure-based” econometric analyses, 

there is some level of domain theory and knowledge that underlies structure-based analyses 
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that facilitates drawing more causal inferences (especially when endogeneity and 

heterogeneity issues are recognized). In particular, traditional structure-based methods are 

driven by well-informed causal frameworks based on domain knowledge. While the 

relationships implicit in these frameworks may be characterized as assumptions by some, 

it is important to note that assumptions need to be made in all kinds of analyses, including 

data-driven analyses (for example, regardless of the methods used, one has to define what 

are the outcome variables and what are the explanatory variables, and not every variable 

can be associated with each other variable).  

 

2.6. Discussion and Conclusions 

Safety analysts often face challenges in trading off the predictive capability of the 

methodological approach with its ability to uncover underlying causality. The trade-offs 

must consider available data in terms of the number of variables and number of 

observations as well as the intended use of the results. In some practical applications, 

highway safety engineers may need to know highly specific information. For example, 

what impact would increasing the shoulder width from 4 to 6 feet on a two-lane rural road 

with specific traffic characteristics and geographic location have on the likelihood and 

resulting injury severity of crashes. Getting to this level of detail necessitates specific data 

requirements and advanced methodologies, and likely some compromise between 

predictive accuracy and underlying causality. Those who strongly support causality as the 

only correct approach are often highly critical of methods that do not fully address 

causality, sometimes arguing that no prediction is better than a prediction based on a flawed 

causal model (although they rarely if ever provide empirical evidence to support this 
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argument). But this argument does not fully appreciate the potential benefits of having 

some level of predictive capability. In contrast, those who consider purely data-driven 

analyses neglect potential insights into underlying causality. Without an understanding of 

underlying causality, changes in vehicle technology, roadway features, and human 

behavior may fundamentally shift model parameters that would ultimately impact 

predictions and safety-policies.  

An ideal model would be one that uncovers causality, has excellent predictive 

capabilities, and is scalable to very large data. However, with currently available methods, 

safety analysts are often forced into a causality/prediction tradeoff that can entail serious 

compromises. Thus there is a clear need in the safety field to ground intrinsically predictive 

models within causal frameworks, while also taking insights from intrinsically predictive 

models (especially from big data) to improve upon causal structures through insights from 

associations involving variables not typically available in traditional safety data. One 

promising direction for future research would be a hybrid modeling approach of data-

driven and statistical methods (with strong consideration to causal elements). Such a hybrid 

approach is likely to be perfected over time as integrative techniques are perfected and 

access to more and more big data becomes available. However, during this development 

period it is important that strong domain knowledge remain at the front and center of all 

analytic approaches and their subsequent interpretations for predictions and policy actions.  
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Chapter 3 
 

An exploratory analysis of the role of socio-demographic 

and health-related factors in ridesourcing behavior 
 

Natalia Barbour, Yu Zhang, Fred Mannering 

3.1. Introduction  

Technological advancements have allowed for the growth and development of the 

sharing economy, which is a phenomenon based on renting and borrowing goods and 

services instead of owning them. Regarding transportation, shared mobility is still in its 

early stages and has not yet fully matured, however the concept (which includes the sharing 

vehicles, bicycles, electric scooters, among others) has been found to have multiple 

monetary, social, and environmental benefits (Shaheen et al., 2016; Xue et al. 2018).  

Ridehailing has become an element of the new economy in the transportation 

context that has enjoyed rapid growth and transformation in recent years. With smart phone 

applications, ridehailing services link personal vehicle drivers with passengers who need 

rides right away or at a future time. One important feature of ridehailing applications is to 

track and display the real-time locations of drivers and passengers, giving the ability to 

estimate waiting times. By incorporating multiple technological advancements, ridehailing 

companies, or called transportation network companies (TNCs) offer a mode of 

transportation that has a similar flexibility of a traditional taxi but at a lower cost (Rayle et 

al. 2016). TNCs such as Uber and Lyft have flourished in the United States (Dias et al., 

2017). Ridehailing platforms also allow for sharing a ride with another customer traveling 

in similar direction. Ridesharing belongs under the umbrella of ridehailing and was found 

to be an important alternative transportation mode because it permits to target individuals 
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who lack access to transit and who are willing to share rides (Erdogan et al., 2014). The 

need to assess ridehailing does not only arise from its impact on travel behavior but how it 

is changing urban transportation and economic efficiency relative to the status quo. A key 

concern is to identify how ridehailing is disrupting existing modes of travel (Jin et al., 

2018). Researchers that have compared taxis and ridehailing services seem to confirm this 

significant modal shift away from taxis (Anderson, 2014; Glöss et al., 2016). Other 

researchers have found significant modal shift from public transit to ridehailing (Rayle et 

al., 2016). Although, there are situations where ridehailing complements public transit and 

serves as a first and last mile solution, the net effect of ridehailing is likely detrimental to 

public transit use. A substantial body of literature has acknowledged that younger, better-

educated, and more affluent individuals are more likely to be ridehailing users (Clewlow 

and Mishra, 2017; McGrath, 2015; Rayle et al., 2016). Since ridehailing has been 

associated with a particular user profile, it raises the question of transportation equity, 

especially in cases when ridehailing substitutes public transit. Evaluating usage rates and 

recognizing groups that are more or less likely to use ridehailing services contributes to the 

conversation about transportation equity and transportation poverty.  

Although past work, such as that by Dias et al. (2017), has provided some insight 

into the complex interactions that contribute to the use of mobility-on-demand such as 

ridehailing and carsharing services, the fact that people’s preferences and experiences with 

such ridehailing services are rapidly evolving has made understanding the factors that 

influence ridehailing usage rates, and the temporal evolution of these factors, a challenge. 

The current chapter seeks to provide additional insights into ridehailing usage rates by 

gathering detailed data relating to potential ridehailing users' socio-demographics, travel 
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behavior, and health-related characteristics, and then using these data to estimate a random 

parameters logit model to assess peoples' probability of selecting one of four ridehailing 

usage-rate categories. Finding what groups tend to use these services more often and what 

factors contribute to their usage rates is essential to creating an equitable transportation 

system.  

The chapter begins with a literature review that focuses on the brief review of 

ridehailing services. This is followed by a discussion of survey design, methodology, and 

the presentation and discussion of model estimation results. Lastly, the chapter concludes 

with a policy implications, a summary and discussion.  

 

3.2. Overview of Ridehailing Users and Usage Rates 

Ridehailing is a subset of the more general shared-mobility concept, and a more 

extensive body of literature can be found relating to shared mobility options such as car-

sharing services (Dias et al., 2017). In fact, the literature on the usage and impacts of 

carsharing have provided numerous insights. For example, research on the impact of 

carsharing on vehicle ownership found that households understandably tend to decrease 

the number of owned vehicles after becoming carshare members (Cervero et al., 2007, 

Martin et al., 2010, Menon et al., 2019). In other work, Clewlow (2016) found a link 

between standard carsharing and sustainable travel, including higher modal shares of 

transit, walking and biking, lower household vehicle ownership, and higher rates of electric 

vehicle ownership. Regarding socio-demographic factors, education, household 

characteristics and propensity for non-motorized transportation were found to be 
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significant predictors of carsharing usage (Costain et al., 2012; Coll et al., 2014). Similar 

variables were taken in consideration in literature aiming to analyze ridehailing usage.  

Although literature specifically related to ridehailing has been continuously 

evolving, previous work has provided some insight into the characteristics and demand for 

this type of service. For example, Rayle et al. (2016) found both similarities and differences 

between taxis and ridehailing services in San Francisco area, where market demand and 

trip lengths were found to be similar for taxis and ridehailing services. However, relative 

to taxis, they also found that ridehailing services had shorter wait times and operated more 

consistently across the day, with regard to time and location. 

Regarding socio-demographics, Rayle et al. (2016) found that ridehailing 

customers were generally younger and more highly educated compared to the overall 

population in San Francisco. Similarly, Dias et al. (2017) found that users of ridehailing 

services tended to be younger, had higher education, higher income, and lived in more 

densely populated neighborhoods. Another study done by Deka and Fei (2019) examined 

both frequency and propensity to ridehailing and their finding also indicated that young 

people, people with higher income and education, workers, and people with fewer cars in 

household tend to use ridehailing more extensively than others. They found that women 

and non-Hispanic white people may have somewhat lower frequency of using ridehailing, 

but that non-Hispanic whites have greater propensity to use such services. When it comes 

to the adoption of on-demand services Alemi et al. (2018) also confirmed that younger, 

better-educated individuals and individuals of non-Hispanic origin are more likely to adopt 

them. These same authors also concluded that millennials tend to use on-demand ride 

services more often compared to their older counterparts and that those living in densely 
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populated areas also had higher usage rates. Intuitively, the fact that ridehailing frequency 

is higher for people living in areas with higher population and employment density was 

also confirmed by Alemi et al. (2018) as well as others, including Hughes and MacKenzie 

(2016) and Wang and Mu (2018) who found greater availability of ridehailing services in 

high-density urban areas.  

In general, prior literature has shown that there are multiple factors determining 

individual’s propensity to participate in shared mobility, and in some cases ridehailing in 

particular. However, in addition to the traditional socio-demographic factors (such as age, 

and income), health-related factors can potentially play a role. This is perhaps more 

obvious with shared active transportation modes (such as bikesharing) because of its 

potential to improve health (Saelens et al., 2003; Frank et al, 2004; Maizlish et al., 2017). 

This has been supported in the literature with research such as that conducted by Barbour 

et al. (2019), where they found that a high body mass index (BMI greater than 25) was 

statistically significant in determining bikesharing usage. However, it could be argued that 

various health-related variables capture a wide variety of life-style and cultural 

characteristics that could easily have their influence extend beyond traditional active 

transportation modes. This possibility will be explored in the current chapter in addition to 

considering how traditional socio-demographics might affect ridehailing usage rates. 

 

3.3. Survey and Research Design 

To collect data for this research, a survey questionnaire was developed to focus on 

socio-demographic questions, travel behavior and travel patterns, traffic crash history, as 

well as other health-related questions and preferences regarding shared mobility. The 
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answers to survey questionnaire were collected between February and April of 2018, and 

the survey was disseminated using online survey software. To ensure that variety of socio-

demographic groups who exhibit different transportation behaviors were reached, several 

different outlets were used to distribute the survey. The CycleHop Bike Share Company, 

which operates bikesharing programs in Tampa, St. Petersburg, Orlando, and the 

University of South Florida (Tampa campus) made the survey available to its registered 

users as well as promoted it via social media. A mailing list from the University of South 

Florida Tampa campus was also used to distribute the survey. 

A total of 675 responses were gathered with the emphasis of the survey being the 

usage of ridehailing services such as Uber or Lyft. Respondents were asked how frequently 

they used such ridehailing services and it was found that 118 respondents specified that 

they have never used either of these services, 280 indicated using them less than once a 

month, 180 a few times a month followed, and 97 who used them at least once a week. 

Regarding variables that may affect these ridehailing usage rates, data were 

collected on health-related questions such as weight, height and self-assessed health, and 

the body mass index (BMI) for all 675 respondents was computed. Out of 675 respondents, 

410 were found to have a normal body mass index (BMI equals 25 or less) 174 were found 

to have high body mass index (BMI between 25 and 30) whereas 91 respondents were 

classified as obese (BMI greater than 30). For self-assessed health only 2 respondents 

indicated extremely bad health whereas 19 assessed their health as slightly bad, 43 said it 

was neither good nor bad, followed by 411 and 200 who classified their health as good or 

extremely good, respectively. Because of the experimental nature of this study, and 

possible concerns with confidentiality relating to private health data, the type of illness or 
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health condition was not specified. Data were also collected on bikesharing registration 

and out of 675 respondents, 301 were also registered users of a bikesharing system. In 

addition to analyzing the ridehailing usage rates, the intent of the study was to explore 

potential links with behavioral patterns and preferences for shared mobility systems.  

Because the research was based on independently collected data that was tied to a 

particular region within the United States, the study has certain limitations. While the 

sample is not representative of general population in the United States, it is interesting to 

note that the usage frequency of ridehailing services obtained in this study follows a similar 

distribution to the data independently collected by Alemi et al. (2018). Although the 

datasets were collected approximately three years apart, both of them peak in the ‘less than 

once a month’ usage category. 

 

3.4 Methodological Approach 

As mentioned above, the variable of interest is how often ridehailing services are 

used with the following choices provided to survey respondents; have never used them, 

less than once a month, a few times a month, at least once a week. Because of the discrete 

nature of these four choices, a discrete outcome approach is appropriate. To implement 

such an approach, a function that determines a probability of how often ridehailing services 

are used is defined for the four ride-sourcing usage categories mentioned above as,  

kn k kn knF = + β X      (3.1) 

where Xkn is a vector of explanatory variables that affect the probability of observation n 

selecting ridehailing-usage category k, βk is a vector of estimable parameters, and εkn is a 

disturbance term which is assumed to be generalized extreme value distributed. In the 
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above equation, possible unobserved heterogeneity can be accounted for by introducing 

random parameters, which allow the parameters to potentially vary across observations, 

giving βkn (Washington et al., 2011; Mannering et al., 2016). Further, the possibility of 

variations in the means and variances of random parameters is accounted for by allowing 

βkn be a vector of estimable parameters that varies across observations defined as 

(Seraneeprakarn et al., 2017; Behnood and Mannering, 2017): 

( )kn k kn kn kn kn kn kn 
 +  EXP   =   +   β Z W    (3.2) 

where βk is the mean parameter estimate across all ridehailing usage categories, Zkn is a 

vector of explanatory variables that captures heterogeneity in the mean that affect ride-

sourcing usage category k, Θkn is a corresponding vector of estimable parameters, Wkn is a 

vector of explanatory variables that captures heterogeneity in the standard deviation σkn 

with corresponding parameter vector ωkn, and vkn is a disturbance term. 

With the above, the resulting random parameters multinomial logit ride-sourcing 

usage category probabilities are (McFadden and Train, 2000; Washington et al, 2011), 

    ( )
( )

( )
( )k kn

n

k kn

K

EXP
P k f | d

EXP


=  

β X
β φ β

β X
   (3.3) 

where Pn(k) is the probability of observation n selecting ride-sourcing usage category k,  

f(β | φ) is the density function of β with φ referring to a vector of parameters of the density 

function (mean and variance), and all other terms are as previously defined. This model is 

estimated by simulated maximum likelihood with 1,000 Halton draws, which has been 

shown to be an efficient estimation approach (McFadden and Train, 2000; Bhat, 2003; 

Milton et al., 2008; Anastasopoulos and Mannering, 2009; Behnood and Mannering, 2016). 
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A wide range of distributional assumptions will be considered in the empirical portion of 

this chapter including the normal, lognormal, triangular, and uniform distributions.  

In addition to the model estimation results, marginal effects are calculated to assess 

the effects that each explanatory variable has on response probabilities. The marginal effect 

gives the effect that a one-unit increase in an explanatory variable has on the response 

probabilities. Average marginal effects over all respondents will be reported (Washington 

et al., 2011).  

Finally, it is important to mention that another methodological alternative to these 

data would be to use an ordered probability model (such as the ordered probit) because the 

usage categories are roughly ordered from low to high (from never to at least once a week). 

While such an ordered approach was considered, the fact that ordered models place a strong 

restriction on how variables can affect outcome probabilities, the more flexible form of the 

mixed logit model was chosen (estimation results that show significant variables in the 

intermediate categories of less than once a month and a few times a month support this 

choice). Please see Mannering and Bhat (2014) for a more extensive discussion of this 

point. 

 

3.5 Model Estimation Results 

The summary statistics for variables included in the final model estimation are 

presented in Table 3.1. Table 3.2 presents the results of random parameters logit model for 

the usage of ridehailing services. A total of 675 observations were used in the mixed logit 

model estimation and 18 variables were found significant in the four ridehailing usage 

functions (never use them, use less than once a month, use a few times a month, use at least 



 

51 
 

Table 3.1. Summary Statistics for Variables Included in Final Model Estimations. 

 

Variable Description  

 

Mean 

Standard 

Deviation 

Male indicator (1 if respondent is a male, 0 otherwise) 0.42 0.49 

Older age indicator (1 if respondent is at least 50 years old, 0 otherwise) 0.21 0.40 

Millennial age indicator (1 if respondent is less than 35 years old, 0 otherwise) 0.54 0.50 

Low annual household income indicator (1 if annual household income is less 

than $75k, 0 otherwise) 

0.54 0.50 

High annual household income indicator (1 if annual household income more 

than $175k, 0 otherwise) 

0.14 0.35 

Black/African American ethnicity indicator (1 if respondent is Black/African 

American, 0 otherwise) 

0.05 0.22 

Children under 6-year-old present in household (1 if respondents indicated 

children present, 0 otherwise) 

0.11 0.31 

One vehicle household indicator 1 if a household owns (or leases) 1 vehicle, 0 

otherwise) 

0.30 0.45 

Small household size indicator (1 if a household size is at most 2 people, 0 

otherwise) 

0.64 0.48 

Lack of commute indicator (1 if respondent does not commute, 0 otherwise) 0.05 0.23 

Bikesharing system registration indicator (1 if respondent is registered for a 

bikesharing system, 0 otherwise) 

0.47 0.50 

Short parking time for the most regular trip (1 if parking time is less than 5 

minutes, 0 otherwise) 

0.61 0.49 

Medium parking time for the most regular trip (1 if parking time is between 5 

and 10 minutes, 0 otherwise) 

0.18 0.39 

Commute by driving alone indicator (1 if respondent drives alone for their most 

common trip, 0 otherwise) 

0.73 0.44 

Short one-way distance to the grocery store indicator  

(1 if the distance to grocery store is 1 mile or less, 0 otherwise) 

0.16 0.37 

Crash involvement indicator (1 if respondent was involved in a vehicle crash, 0 

otherwise) 

0.54 0.50 

Self-assessed health indicator (1 if respondent assessed their health as good or 

extremely good, 0 otherwise) 

0.91 0.29 

Obese BMI indicator (1 if respondent has a BMI (body mass index) greater than 

30, 0 otherwise) 

0.13 0.24 

High BMI indicator (1 if respondent has a BMI (body mass index) greater than 

25, 0 otherwise) 

0.39 0.48 
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Table 3.2. Random Parameters Logit Model for Frequency Use of Ridehailing Services (All Random Parameters are Normally 

Distributed)  

 

 

Variable description* 

 

Estimated 

Parameter 

 

 

t-Statistic 

Marginal Effects 

 

Never [N] 

Less than once 

a month [L] 

A few times 

a month [F] 

At least once 

a week [W] 

Constant [S] 0.19 0.40     

Socio-demographic factors  
      

Male indicator (1 if respondent is a male, 0 otherwise) 

[N] (Standard deviation of parameter distribution) 

-2.32 (4.02) -1.44 (2.35) -0.006 -0.013 -0.008 0.028 

Older age indicator (1 if respondent is at least 50 years 

old, 0 otherwise) [N] 

1.35 4.24  0.048 -0.027 -0.018 -0.003 

Older age indicator (1 if respondent is at least 50 years 

old, 0 otherwise) [L] 

0.80 2.67 -0.016 0.030 -0.012 -0.002 

Millennial age indicator (1 if respondent is less than 35 

years old, 0 otherwise) [W] 

1.87 4.73 -0.020 -0.044 -0.046 0.11 

Low annual household income indicator (1 if annual 

household income is less than $75k, 0 otherwise) [N] 

0.79 2.93 0.051 -0.025 -0.019 -0.008 

Low annual household income indicator (1 if annual 

household income is less than $75k, 0 otherwise) [L] 

0.97 4.45 -0.030 0.094 -0.044 -0.020 

High annual household income indicator (1 if annual 

household income more than $175k, 0 otherwise) [F] 

-0.53 -1.73 0.004 0.006 -0.011 0.002 

Black/African American ethnicity indicator (1 if 

respondent is Black/African American, 0 otherwise) [L] 

-1.12 -2.00 0.003 -0.007 0.003 0.001 

Household characteristics 

      

Children under 6-year-old present in household (1 if 

respondents indicated children present, 0 otherwise) [N] 

0.60 1.83 0.062 -0.029 -0.025 -0.008 

One vehicle household indicator 1 if a household owns 

(or leases) 1 vehicle, 0 otherwise) [L] 

-0.38 -1.59 0.005 -0.018 0.009 0.003 
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Small household size indicator (1 if a household size is 

at most 2 people, 0 otherwise) [F] 

0.44 2.13 -0.014 -0.025 0.049 -0.010 

Travel behavior  

      

Lack of commute indicator (1 if respondent does not 

commute, 0 otherwise) [N] 

1.15 2.67 0.012 -0.006 -0.004 -0.002 

Bikesharing system registration indicator (1 if 

respondent is registered for a bikesharing system, 0 

otherwise) [N] 

-0.96 -3.64 -0.043 0.016 0.021 0.007 

Bikesharing system registration indicator (1 if 

respondent is registered for a bikesharing system, 0 

otherwise) [L] 

-0.79 -3.19 0.013 -0.058 0.032 0.013 

Bikesharing system registration indicator (1 if 

respondent is registered for a bikesharing system, 0 

otherwise) [W] 

0.69 2.11 -0.005 -0.011 -0.015 0.032 

Short parking time for the most regular trip (1 if 

parking time is less than 5 minutes, 0 otherwise) [F] 

-0.49 -2.49 0.015 0.023 -0.047 0.009 

Medium parking time for the most regular trip (1 if 

parking time is between 5 and 10 minutes, 0 otherwise) 

[W] 

-0.75 -1.74 0.002 0.003 0.004 -0.009 

Commute by driving alone indicator (1 if respondent 

drives alone for their most common trip, 0 otherwise) 

[W] 

-1.11 -3.55 0.011 0.022 0.024 -0.056 

Short one-way distance to the grocery store indicator  

(1 if the distance to grocery store is 1 mile or less, 0 

otherwise) [W] 

0.68 2.63 -0.006 -0.011 -0.004 0.021 

Crash involvement 

      

Crash involvement indicator (1 if respondent was 

involved in a vehicle crash, 0 otherwise) [L] (Standard 

deviation of parameter distribution) 

0.41 (2.02) 1.80 (1.89) -0.011 0.045 -0.022 -0.012 
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Health indicators 

      

Self-assessed health indicator (1 if respondent assessed 

their health as good or extremely good, 0 otherwise) 

[N]  

-0.66 -1.78 -0.071 0.034 0.029 0.008 

Self-assessed health indicator (1 if respondent assessed 

their health as good or extremely good, 0 otherwise) 

[W] 

-1.45 -3.67 0.018 0.039 0.042 -0.099 

High BMI indicator (1 if respondent has a BMI (body 

mass index) greater than 25, 0 otherwise) [W] 

-0.57 -1.63 0.003 0.005 0.005 -0.013 

Obese BMI indicator (1 if respondent has a BMI (body 

mass index) greater than 30, 0 otherwise) [N] 

0.65 2.10 0.015 -0.007 -0.006 -0.002 

Number of observations 675     

Log likelihood at zero -935.75     

Log likelihood at convergence -797.63     

* Parameter defined for: [N] Have Never Used; [L] Less Than Once a Month; [F] Few Times a Month; [W] At Least Once a Week 

 

 



55 

  

once a week). Only variables that produced statistically significant model parameters (at least the 

90% confidence level on a two-tailed t-test) were included in the model. Table 3.2 shows that only 

two of these variables produced parameters with a statistically significant standard deviation 

(random parameter), both were normally distributed since other tested distributions did not 

produce significantly better results. In addition, no variables were found to have statistically 

significant heterogeneity in the mean or variance. Thus, the random parameters in the estimated 

model reduce to βkn = βk + νkn (see Equation 3.2). 

In Table 3.2, explanatory variables were grouped into five main categories: socio-

demographic factors, household characteristics, travel behavior, crash involvement, and health 

indicators. Regarding the socio-demographic factors, the male indicator was found to produce a 

normally distributed parameter with a mean -2.32 and standard deviation equal to 4.02.  This 

results in roughly 28% of male respondents being more likely to have never used ridehailing 

services and 72% males less likely to do so. This finding captures additional unobserved factors 

determining gender related travel behavior and reflects the non-homogenous behavior among 

males. Marginal effects show the overall effect of this variable is that males have a higher 

probability of at least once a week usage relative to females, and lower probabilities for all other 

usage categories. 

Respondents who were at least 50 years old, produced statistically significant parameters 

in two of the usage-category functions. The net effect (see marginal effects) was overall a higher 

probability of never using ridehailing relative to this age group’s younger counterparts. This 

finding is consistent with prior literature addressing adoption of new technologies and services 

among older adults (Lee and Coughlin, 2015). In contrast, respondents less than 35 years old 

(primarily millennials) were found to be much more likely to use ridehailing services at least once 
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a week relative to their older counterparts (a 0.11 higher probability as indicated by the marginal 

effects in Table 3.2), which is also consistent with prior research that found increased use of 

ridehailing services among millennials (Alemi et al., 2018; Deka and Fei, 2019; Rayle et al., 2016). 

Regarding income level, respondents with lower income (annual household income less 

than $75,000 per year) were found to produce statistically significant parameters in two of the 

usage-category functions with the net effect indicating that this income group was more likely to 

be in the two lower-usage categories (see marginal effects) than their higher-income counterparts. 

Equality and equity in transportation have been widely addressed in recent studies (Teunissen et 

al., 2015; Pereira et al., 2016), with low-income groups often being denied opportunities due to 

the lack of flexible mobility options or due affordability issues. Prior studies conducted by Alemi 

et al. (2018) and Deka and Fei (2019), among others, also confirmed that the use of ridehailing 

services is more prevalent among individuals with higher income. While findings in Table 3.2 

support this literature, at the other end of the income spectrum, households making more than 

$175,000 per year were found to have a lower probability of using ridehailing a few times a month, 

with higher probabilities of using less or more often (see marginal effects). This reflects the rather 

complex effect income can have on ridehailing-usage rates. 

Race was also found to be a statistically significant factor in ridehailing behavior with 

respondents who indicated being African-American being found, on average, to have a lower 

probability of using these services less than once a month. Although statistically significant, the 

small size of the marginal effects reflects the relatively small impact of race on ridehailing usage. 

The authors would like to emphasize and point out the issue of race being used as an explanatory 

variable in the study. Although the biological concept of race has long been controversial in 

psychology and peer reviewed research and some psychologists challenged it in the past, many 
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researchers have adopted it as a reasonable foundation and used it as an inferential research factor 

and variable (Yee et al, 1993). From a statistical perspective, the African-American indicator is 

likely capturing unobserved characters associated with race such as those related to cumulative 

experiences and opportunities, media exposure, societal conditioning, and so on. 

In addition to socio-demographic variables, multiple household characteristics and travel 

behavior variables were found to play a significant role in ridehailing usage. Respondents from 

households with children under the age of 6 present had, on average, 0.062 higher probability to 

have never used ridehailing services. The presence of children was also found to be a significant 

factor preventing respondents from taking bikesharing in previous work (Barbour et al., 2019). 

Dias et al. (2017) also emphasized the presence of children in the household to be a significant 

predictor of travel behavior. The effect of children on travel behavior is critical since caregivers’ 

travel-related decisions can be strongly influenced by their presence. 

Vehicle ownership and household size were also found to play a role in ridehailing usage. 

Respondents from one-vehicle households were less likely to use ridehailing a few times a month 

compared to their counterparts whose households own or lease more than one vehicle. In contrast, 

respondents from households with at most 2 people living in them were more likely to use 

ridehailing a few times a month. These results indicate that household size and vehicle availability 

have interesting and statistically significant effects on ridehailing usage.  

For travel-behavior effects, respondents who did not commute were found to be more likely 

to have never used ridehailing. This suggests that the presence of a commute was found conducive 

to engaging in using Uber/Lyft like services more frequently.  

The impact of willingness to use other modes of shared mobility (in this case bikesharing) 

on ridehailing usage was also found to produce statistically significant results. An indicator 
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variable for respondents who reported that they were registered users of a bikesharing system was 

found to be statistically significant in three of the usage functions, with the net effect of the 

bikesharing registration indicator (see marginal effects in Table 3.2) being that such respondents 

were more likely to have higher ridehailing usage rates. This finding aligns with some of the prior 

studies that try to identify groups of people who are more likely to use shared mobility modes 

(Dias et al., 2017).  

Estimation findings shown in Table 3.2 also show that parking time is an important factor 

in ridehailing usage. Respondents with short parking times for their most regular trip (less than 5 

minutes) were found to be less likely to use ridehailing services a few times a month, suggesting 

that people with longer parking times could plausibly find them convenient and timesaving. 

Respondents with parking times for their most regular trip between 5-10 minutes were less likely 

to use Uber/Lyft type services at least once a week. 

Respondents who indicated commuting by driving alone had, on average, 0.056 lower 

probability of using ridehailing at least once a week. This result means that the respondents who 

commute by other means were more likely to use shared mobility modes more frequently. Once 

again, a common trait among people who are more willing to use shared and alternate modes of 

travel was identified. 

Respondents who indicated living within 1 mile of a grocery store (which likely indicates 

urban setting) were found to be more likely to use ridehailing at least once a week. This variable 

likely reflects the fact that dense development is more conducive to ridehailing where such services 

can easily substitute for conventional transportation modes. This finding is consistent with prior 

studies that link urban development and shared mobility which also concluded that ridehailing is 

most popular and available in high- density urban areas (MacKenzie, 2016; Wang and Mu, 2018).  
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Regarding traffic accident history, the crash-involvement indicator produced a normally 

distributed parameter with a mean 0.41 and a standard deviation equal to 2.02. This suggests that 

58% of respondents who were involved in a traffic crash were more likely to use ridehailing 

services less than once a month and 42% less likely. This variable could potentially reflect the 

level of trust in independent drivers and their privately-owned vehicles. Some people may exhibit 

more caution when engaging in ridehailing services and others may not.  

The last group of variables were health related. An indicator variable for respondents who 

self-assessed their health as being good or extremely good was found to be statistically significant 

in two of the ridehailing usage functions. The net effect of this variable (see marginal effects in 

Table 3.2) were higher probabilities in the less than once a month and a few times a month usage 

categories, relative to respondents who did not rate their health in these categories.  

Regarding other health measures, an indicator variable for the body mass index (BMI) was 

found to be statistically significant (in slightly different forms) in two of the ridehailing usage 

functions. In the never-used function, respondents whose body mass index (BMI) was classified 

as obese (BMI greater than 30) was significant and these respondents had, on average, 0.015 higher 

probability to have never used ridehailing services. This could be related to a variety of factors 

such as comfort, the need to travel, the trip purpose, or even some psychological factors given that 

taking ridehailing involves social networking and engagement. Prior studies have already started 

to address and analyze the type of social ties and their impact on travel behavior and activity type 

with the size and diversity of one’s core network found to be positively correlated with the variety 

and frequency of travel-generating activities (Maness, 2017). In addition to this obese BMI 

indicator, a high BMI indicator (BMI greater than 25) was found to be statistically significant in 

the at least once a week usage category. Respondents with high body mass index had, on average, 
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0.013 lower probability to use ridehailing services compared with their counterparts who had a 

normal body mass index (keep in mind that all respondents in the obese-BMI category will also 

be in the high-BMI category). These two variables underscore the potential importance of health-

related issues in ridehailing behavior and align with previous findings relating to BMI and the use 

of bikesharing systems (Barbour et al., 2019). BMI indicators have been found to be statistically 

significant factors in behaviors relating to transportation and it is plausible that they capture some 

of the life-style choices that determine the propensity to use shared mobility in general.  

 

3.6 Policy Implications and Directions for Further Research 

Transportation network companies and their ridehailing services clearly play an important 

role in the emerging era of shared mobility. Still, the impacts of such companies and their services 

has been polarizing and because of the relative uncertainty of the long-term impacts on the 

transportation system. 

This chapter sought to provide a clearer understanding on how the customers approach 

these services and what factors are predictors of their frequency of use. Considering current efforts 

that are being undertaken in the area of transportation equity, a finding deserve additional scrutiny. 

Older respondents (older than 50 years old), poorer respondents (those with annual household 

income less than $75,000), and those with young children (the presence of children under 6 years 

of age in their household) all had a higher probability of never having used ridehailing services. 

As new modes of transportation are being deployed and technology advances, it is essential to 

create policies that will not leave out the most vulnerable members of society but instead contribute 

to meeting their transportation needs. Social equity has been often overlooked in planning and 

policy strategies resulting in an historical marginalization of the most vulnerable members of 
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society by policies that did not necessarily provide access to the same social and economic 

opportunities (Sanchez et al., 2003). Additionally, low-income populations tend to have lower 

vehicle ownership and vehicle access and are subsequently more dependent on alternative 

transportation modes (Fletcher et al., 2005; Mackett, 2014). The findings herein suggest that lower 

income, older age, and the presence of small children in the household are characteristics that 

should be targeted as a means of reducing transportation inequity. For example, to support parents 

of young children and assisting them in getting around, having ridehailing drivers offer car seats 

or at the very minimum booster seats would be a good first step. Approaches such as these could 

allow emerging transportation options such as ridehailing to address transportation-equity issues.  

It is also interesting to note that respondents who were registered for a bikesharing system 

were less likely to never have used ridehailing services. This creates an opportunity to further 

cultivate the ‘sharing mindset’; possibly through policy and pricing help to guide the customers 

who currently make a single-rider trip to consider sharing a ride with another user. Sharing rides 

does not only increase the efficiency of a vehicle but could also help to break single occupancy 

trip mindset. Policy efforts that encourage sharing ridehailing trips could be beneficial on multiple 

fronts and lead the transportation system into the future by altering behavioral economics and 

system efficiency. 

Finally, the fact that many health-related variables were significant in this study suggests 

that exploring these effects further could be a fruitful research direction. Continuing to enhance 

the transportation field’s understanding of how transportation and public health relate to each other 

has potential to assist in building better, healthier, and more equitable transportation systems.  
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Chapter 4 
 

Individuals’ willingness to rent their personal vehicle to others: 

An exploratory assessment of the peer-to-peer carsharing 
 

Natalia Barbour, Yu Zhang, Fred Mannering 

4.1. Introduction 

The concept of sharing economy aims to maximize and optimize the use of resources and 

decrease cost while increasing accessibility of products, goods, or services. It has been widely 

adopted in the area of transportation under the term shared mobility. In recent years, the sharing 

economy and shared mobility have been considered an important element of a sustainable 

transportation system.  

The breakdown of shared mobility modes includes bikesharing, carsharing, ridesharing, 

and the sharing-related potential of private and public transportation network companies 

(Kodransky and Lewenstein, 2014). Each of them operates on different paradigms and each has a 

different business model. Regarding carsharing, there currently are four distinctive business 

models: round-trip carsharing, one-way (or point-to-point) carsharing, peer-to-peer carsharing, and 

fractional ownership (Shaheen et al., 2018). Most round-trip and one-way carsharing companies 

allow their users to rent a vehicle on hourly or daily bases by paying a monthly or annual fee. 

In this chapter the focus falls mainly on the peer-to-peer carsharing model, which 

encompasses personal vehicle sharing and allows renting a personally owned vehicle and 

collecting a monetary compensation for it. Sharing practices and economies are hybrid collections 

of collaborative ways of consuming for profit-seeking consumption and production (Dowling et 

al., 2018). While cars have long been shared among family members and close friends, the recent 

concept of peer-to-peer carsharing has just recently begun to gain popularity. The available vehicle 
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fleet in peer-to-peer carsharing is composed only of personally owned cars. Although the vehicle 

owners do receive a monetary compensation for renting out their cars, operations of the whole 

network are usually managed by a third-party company (nonprofit or for-profit), and this company 

keeps a percentage of that compensation as the commission. One of the upsides of this model is 

that the operator (rental agency) does not have to buy the vehicle fleet and thus the initial start-up 

costs are negligible compared to a traditional carsharing model, in which the provider owns the 

vehicle fleet. This concept supports the sharing and use of already owned and underutilized goods, 

which in effect allows rental agencies to use the vehicle fleet without the need for maintenance.  

Over the years, there have been a few studies that address peer-to-peer carsharing. For 

example, Shaheen et al. (2012) found that the peer-to-peer carsharing model can also considerably 

decrease overall operating costs mostly because vehicle capital comprises almost 70% of total 

operating expenses for traditional carsharing companies. Past work has also noted that some of the 

desirable consequences of carsharing include reduced car ownership, lower greenhouse gas 

emissions coupled with its potential to relieve congestion and provide convenient mobility 

solutions especially in the areas with limited parking (Shaheen et al., 2008; Correia and Viegas, 

2011).  

The wide application and desirable consequences of peer-to-peer carsharing make this 

emerging mode worthy of further investigation. Because the presence of a sufficiently large 

vehicle fleet is a key component for peer-to-peer carsharing to be successful, the focus of this 

chapter is to explore the vehicle supply side of peer-to-peer carsharing. Specifically, the current 

study seeks to examine individuals’ willingness to rent their personal vehicles by collecting 

detailed data related to potential vehicle providers’ socio-demographics, travel history, travel 

behavior, and health-related information, and then use the data to estimate a statistical model of 



64 

  

their willingness to rent their vehicles in a peer-to-peer system. The increasing interest in the 

sharing economy and the exponential growth of this business model pose numerous questions 

rooted in behavioral economics and travel behavior. Transportation-related decisions are 

influenced by variety of factors, financial being one of them. However, the current study seeks to 

explore a wider variety of factors and their relationship to the willingness to rent a personal vehicle 

to a peer-to-peer fleet. The model estimation results will provide insights into the likelihood of 

individuals allowing someone to use their personal vehicle in exchange for financial compensation. 

Peer-to-peer carsharing reflects an important consumer behavior shift. Over the last few 

decades the consumer behavior has shifted from “you are what you own” to “you are what you 

can access” (Wilhelms et al., 2017; Belk, 1988, Belk 2014). Such shift in behavior coupled with 

the introduction of new transportation models merits the efforts to understand this new paradigm. 

Because the empirical work seeking to understand the role of socio-demographic factors relating 

to the adoption intention of peer-to-peer carsharing models is limited (Prieto et al., 2017) current 

efforts have been undertaken.  

The chapter begins with a literature review, which focuses on the phenomenon of sharing 

economy and human factors in peer-to-peer carsharing. The literature review section is followed 

by survey and research design, methodological approach, then results, discussion and finally the 

chapter concludes with a summary and discussion of findings. 

 

4.2. The Sharing Economy Phenomenon 

Although the term “sharing economy” has become widely used in recent years, some 

researchers have argued that this is not a novel concept. As pointed out in Frenken and Schor 

(2017), the sharing economy has been practiced in working class and lower income communities 
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as a way of surviving with limited resources. Nevertheless, the same authors indicated an 

interesting newness in what is viewed as the modern sharing economy is the notion of sharing 

one’s assets and goods with people outside their social networks. Rapid growth of technology and 

digital platforms allow for easy and convenient communication with strangers, and thus have made 

the sharing of assets less complex than it was in the past years.  

The practical implication of sharing economy is that it gives others access to an individual’s 

personal, under-utilized assets, with a possibility of monetary benefit. Benkler (2014) defined 

shareable goods as goods with excess capacity where the owner does not consume the whole 

product all the time. Some examples of goods potentially having excess capacity include vehicles, 

houses, boats, and even books and tools. Motivations for participating in sharing economy include 

economic, environmental, and social or lifestyle related (Bocker and Meelen, 2017).  

There is also a separate body of literature addressing the psychological motivation for 

participating in sharing economy based on common psychological theories. Bellotti et al. (2015) 

summarized some of the theories of motivation. The theory of the hierarchy of needs suggests 

sharing economy participation is an outgrowth of psychological and self-fulfillment needs 

(Maslow, 1943). Self-determination theory is another behavioral theory that is often used to 

explain sharing economy related behaviors (Hamari et al., 2015; Bellotti et al., 2015; Tussyadiah, 

2016). Self-determination theory postulates that motivations can be distinguished as intrinsic 

(enjoyment, sustainability) or extrinsic (economic benefits, reputation) (Deci and Ryan, 1985, 

Hamari et al., 2015). Somewhat different, social exchange theory focuses on the formation of 

motivations for economic relationships through exchanges in a network (Bellotti et al., 2015). 

Some studies (Hawlitschek et al., 2018) designed to understand consumer motives for peer-to-peer 

sharing (driver-related, prerequisites, and impediments) were grounded in the Theory of Planned 
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Behavior (Ajzen, 1991, 1985). This theory implies that a motive to either engage or not engage in 

certain activities is dependent on beliefs about that activity, with individuals tending to engage in 

behaviors based on their evaluation of the information available to them.  

These theories formed the basis for empirical studies that have sought to identify 

measurable factors that determine sharing economy participation probabilities. Empirical studies 

found that older age, education, gender, income, marital status, and the state of being 

environmentally friendly are significant factors in sharing economy participation (Diamantopoulos 

et al., 2003; Li et al., 2005; Cornwell et al., 2008; Shen and Saijo, 2008; Hellwig et al., 2015). 

 

4.3. Human Factors in Peer-to-Peer Carsharing 

Regarding shared mobility related behaviors, and the process of renting a personal vehicle 

to receive a monetary compensation, Wilhelms et al. (2017) and Shaheen et al. (2018) found that 

participants are mainly driven by financial reasons. Nevertheless, sharing economy advocates 

argued that it could also be a result of more altruistic and environmental-sustainability motives 

(Belk, 2010). In contrast, some researchers pointed out that enhanced access to vehicles could 

increase automobile usage and distance traveled and thus lead to more congestion and pollution. 

They argue that potential increases in vehicle access and usage could eventually impact the 

accessibility and cost of other modes of transportation such as public transit and taxis (Benjaafar 

et al., 2018).  

Shaheen et al. (2018) found that income, education, race, gender, and age were important 

factors in peer-to-peer carsharing behaviors. Peer-to-peer carsharing users had slightly higher 

incomes compared to the US population as a whole. They were also found to be more likely to be 

males and white and tended to be younger and more educated than the general population. In their 
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work, over half (55%) of the survey respondents who participated in peer-to-peer carsharing used 

the system one or more times a month. The most active users (8% of the collected sample) used 

the system five or more times per month. The users primarily used the carsharing system to meet 

their basic transportation needs including running errands as well as some long-distance 

recreational travel. Prieto et al. (2017) examined the demand side of peer-to-peer carsharing and 

found that living in the city center, being male, and being single increase the probability of using 

peer-to-peer carsharing option. Shaheen et al. (2018) also studied the challenges to the operators 

of peer-to-peer carsharing. They identified key barriers of peer-to-peer carsharing, which are lack 

of predictability, reliability, and a fleet exhibiting major differences among the vehicles such as 

age, maintenance or wear and tear. Due to the lack of state and national policies, vehicle insurance 

was another reported challenge. Operators were forced to find ways within industry frameworks 

(many times flawed) to successfully run their peer-to-peer companies. Insurance also reemerged 

as a key issue with peer-to-peer vehicle services as most state insurance laws have not kept pace 

with the introduction of peer-to-peer models (Shaheen et al., 2016). 

Ballús-Armet et al. (2014) asked respondents in their survey whether they would be willing 

to rent out their personal vehicle. About 50% of respondents (53% and 47% in San Francisco and 

Oakland, respectively) indicated having some concerns regarding insurance and liability. Some 

other concerns mentioned were fear of damage and fear of renting out their automobile to an 

unreliable customer. Despite the above concerns, more than 25% of surveyed vehicle owners 

indicated willingness to rent out their vehicles through a peer-to-peer carsharing service. In 

addition to being motivated by the financial compensation, the respondents were also willing to 

make use of an otherwise underused asset.  
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Several different pricing strategies are currently being tested and practiced. Some operators 

allow the owners to determine the price while others (DriveMycar) do not. There is also a hybrid 

model that allows the owner to name the price but permits the platform to adjust it higher (Turo). 

Another pricing approach lets the platform suggest a price (JustShareIt) but allows owners to 

modify it. Because we are still in the early stages of peer-to-peer carsharing, there is likely to be 

an experimental and transitional phase in pricing strategies. However, there appears to be a trend 

toward operators determining the price through developing of sophisticated pricing engines 

(Benjaafar et al., 2018).  

To date, research efforts addressing the socio-demographic factors relating to the adoption 

patterns of peer-to-peer carsharing have been relatively limited. There has been some work that 

suggests that socio-demographics in peer-to-peer carsharing significantly influences travel 

patterns (Dill et al., 2019), but few if any studies have addressed the role of socio-demographic 

factors in the willingness to participate in the peer-to-peer carsharing. As stated by Martin (2016) 

and Wilhelms et al. (2017) the literature focusing on the motives for of peer-providers granting 

others access to their cars remains limited. Despite gaining media attention, academia has mostly 

focused on studying implications of standard carsharing. The intent of the current study is to 

develop a deeper understanding of factors determining the propensity to participate in peer-to-peer 

carsharing and, in particular, to rent out a personal vehicle for financial compensation. To achieve 

this goal, survey data containing detailed socio-demographic and travel information will be used 

to estimate a statistical model of individuals’ participation likelihood.  
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4.4 Survey and Research Design 

To gather data for the current study, a web-based survey that focused on preferences and 

behaviors related to shared mobility was designed. This chapter is part of a wider study and the 

survey was intended to examine a variety of shared mobility related behaviors. The survey was 

disseminated between February and April 2018, and the data-collection process was performed 

using online survey software with the help of CycleHop Bike Share Company and the University 

of South Florida. The survey was shared with the registered CycleHop Bike Share Company 

members of bikesharing programs located in Florida (Orlando, Tampa, and St. Petersburg) and the 

students and faculty of the Tampa campus of University of South Florida as well as advertised 

online. Because the topics of interest to the general study included shared mobility related 

behaviors, it was important to collect sufficient sample of both: shared mobility users and the ones 

who do not use shared mobility modes. To expand the reach of the survey and gather information 

about the non-users, the link to the survey was also advertised on social media through multiple 

platforms. This approach allowed the survey to reach a wide variety of respondents and resulted 

in obtaining information about a diverse group in terms of gender, age, income, and travel 

behavior. In the final dataset for this work, less than half respondents were bikesharing users 

(46.7%).  

Although, a sufficient number of observations was collected, the survey has some 

limitations. Because of the multiple channels of survey distribution, the exact location of 

respondents’ residence is not known. Another shortcoming, which is common to stated preference 

surveys, is the difficulty of stating a preference without prior experience of the studied 

phenomenon. However, in this case, respondents were asked about their perception towards their 
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currently owned vehicle and how likely they were to rent it to another person, hence it could be 

argued that they were more aware of how they would behave if presented with such an option. 

The survey collected information on socio-demographic factors, household composition, 

travel behavior, travel history, commute type and length, shared mobility related behaviors as well 

as some health-related questions such as body mass index and overall health status. Respondents 

were also asked about their willingness to rent out a personal vehicle to receive a monetary 

compensation (which will serve as the dependent variable in this study). The respondents were 

given five possible responses to this question: extremely unlikely, unlikely, unsure, likely and 

extremely likely. To assure the consistency and validity of the data, the responses of users who do 

not own a vehicle were not used in the analysis because this would involve having them make a 

hypothetical choice which would be distinctively different from those respondents currently 

owning vehicles. Out of the 644 observations that were used to estimate the model 285 (44%) 

respondents indicated that they were extremely unlikely to rent out their personal vehicle, 208 

(32%) respondents implied they were unlikely to do so, 62 (10%) answered they unsure while 69 

(11%) and 20 (3%) were likely and extremely likely, respectively.  

In addition to the typical socio-demographic and travel related variables that are often used 

in shared mobility behaviors studies, the dataset was expanded with health-related questions and 

bikesharing registration status. In the sample used for this research 301 respondents indicated to 

be registered users of a bikesharing system. Interestingly, some studies have found an association 

between certain lifestyle choices and positive attitudes toward shared mobility modes in general 

(Lavieri et al., 2017). Barbour et al. (2019a) concluded that being registered for a bikesharing 

system had an impact on the likelihood of frequency usage of ridesourcing services such as Uber 
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or Lyft. Selected socio-demographic variables from the collected sample are shown in Figure 4.1. 

It should be emphasized that a much wider set of variables was used for the analysis.  

 

 

Figure 4.1. Descriptive statistics of selected variables in the collected sample.  

 

4.5 Methodological Approach  

The objective of the study is to investigate factors playing key roles in the willingness to 

rent out a personal vehicle in order to receive a financial incentive. Because the dependent variable 

is an ordered response to the survey question: how likely would you be to rent out your personal 

vehicle for monetary compensation (with response alternatives extremely unlikely, unlikely, 

unsure, likely, and extremely likely), standard ordered-response modeling approaches are 

appropriate methods of analyzing the survey data (Greene, 1997; Washington et al., 2011). Such 

approaches begin with defining an unobserved variable, z, as a linear function of explanatory 

variables, 

     zi = Xi + i,      (4.1) 
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where X is a vector of explanatory variables that determines the discrete ordering of observation 

i,  is a vector of estimable parameters, and i is a disturbance term. Equation 1 is further used to 

define observed ordinal data, yi : 

 

     yi = 1  if zi  0  

         = 2  if 0 < zi  1 

         = 3  if 1 < zi  2     (4.2) 

         = 4  if 2 < zi  3 

         = 5  if zi  3, 

 

where 1 = extremely unlikely, 2 = unlikely, 3 = unsure, 4 = likely, and 5 = extremely likely, and  

's are estimable parameters (thresholds) that define yi and are estimated jointly with the model 

parameters .  To determine the probability of the five specific ordered responses for each 

observation i, an assumption on the distribution of i in Equation 1 must be made. An ordered 

probit model results if i is assumed to be normally distributed across observations. With this 

assumption, the ordered category selection probabilities can be written as (Washington et al., 

2011), 

    P(y = 1) = (–Xi) 

    P(y = 2) = (1–Xi) – (–Xi) 

    P(y = 3) = (2–Xi) – (1–Xi)    (4.3) 

    P(y = 4) = (3–Xi) – (2–Xi) 

    P(y = 5) = 1 – (3–Xi), 

 

where (.) is the cumulative normal distribution.  

A positive value of β indicates that an increase in Xi will increase the probability of getting 

the highest response (extremely likely) and will decrease the probability of getting the lowest 

response (extremely unlikely) thus the model allows for the clear interpretation of the extreme 

categories. However, the direction of the effect that the explanatory variables has on the dependent 
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variable is difficult to interpret in the intermediate categories (unlikely, do not know/ cannot say, 

likely) without computing marginal effects as (Washington et al., 2011), 

   
( )

( ) ( )1

i

n i n i

i

P y = n
 −

 =  − −  − 
βΧ βΧ β

X
,    (4.4) 

where P(y = n) is the probability of outcome response n, µ represents the thresholds, and ϕ(.) is 

the standard normal density. Marginal effects indicate the magnitude of effect that a one-unit 

change in an independent variable has on outcome category n’s selection probability, and average 

marginal effects (averaged over all observations) will be reported. 

It is also important to consider the possibility of unobserved heterogeneity in model 

estimation, which accounts for the fact that unobserved factors may be present in the data that 

make the effect of explanatory variables vary across individual observations or groups of 

observations. To account for this possibility, several statistical approaches are available including 

random parameters models, latent class (finite mixture) models, Markov switching models, or 

combinations of the above (Mannering et al., 2016). In this study unobserved heterogeneity is 

considered by estimating a random parameters model with, 

     βi = β + φi ,      (4.5) 

where βi is a vector of observation parameters and φi is a randomly distributed term (for example, 

normally distributed term with mean zero and variance σ2). Maximum likelihood estimation is 

used to estimate random parameters ordered probit model and 1,000 Halton will be used to arrive 

at the final model estimation. 1,000 Halton draws have been shown to sufficiently allow accurate 

parameter estimates (Bhat, 2003; Milton et al., 2008; Anastasopoulos and Mannering, 2009; 

Behnood and Mannering, 2016). 
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4.6 Model Estimation Results  

Summary statistics of variables found to be statistically significant in the model are 

presented in Table 4.1. Random parameters ordered probit model estimation results are presented 

in Table 4.2 with corresponding marginal effects in Table 4.3.  

Table 4.1. Summary statistics for variables included in final model estimations. 

 

Variable Description  

 

Mean 

Standard 

Deviation 

Female indicator (1 if respondent is female, 0 otherwise)  0.59 0.49 

Age indicator (1 if respondent is 40 years old or greater, 0 otherwise) 0.36 0.48 

Caucasian indicator (1 if respondent is Caucasian, 0 otherwise) 0.72 0.45 

High annual household income indicator (1 if respondents annual household 

income is more than $200,000/year, 0 otherwise) 

0.15 0.35 

One-person household indicator (1 if respondent lives alone, 0 otherwise) 0.19 0.39 

One motor-vehicle indicator (1 if respondent’s household owns or leases 1 motor-

vehicle, 0 otherwise) 

0.31 0.46 

Grocery store time-distance indicator (1 if respondent has less than 5 minutes but 

more than 1 mile to a grocery store, 0 otherwise) 

0.20 0.41 

Bikesharing registration indicator (1 if respondent is a registered user of a 

bikesharing system, 0 otherwise) 

0.47 0.50 

 

Turning to the estimation results in Tables 4.2 and 4.3, it is interesting that the body mass 

index and other health-related variables were not found to be statistically significant in the model. 

Because health-related variables were previously found to be statistically significant in 

determining bikesharing and ridesourcing behaviors it was suspected that such variables may 

capture life-style choices that could affect rental likelihoods, but the model estimation results do 

not support this (Barbour et al., 2019a, Barbour et al., 2019c). However, Table 4.2 shows that 

gender is a statistically significant variable in determining the willingness to rent out a personal 

vehicle to receive a monetary compensation. As indicated by the average marginal effects (Table 

4.3) female respondents were found to have a higher probability of being extremely unlikely to 
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rent their personal vehicle relative to their male counterparts. Female respondents had, on average, 

0.072 higher probability to be extremely unlikely to rent their personal vehicle. This finding is 

consistent with Shaheen et al. (2018) who found that males were more inclined to use peer-to-peer 

carsharing services relative to females.  

Table 4.2. Random parameters ordered probit model estimation of willingness to rent a personal 

vehicle to receive a financial reward (extremely unlikely, unlikely, unsure, likely, extremely 

likely) (all random parameters are normally distributed).  

 

Variable Description 

Estimated 

Parameter 

 

t-Statistic 

Constant 0.53 4.32 

Female indicator (1 if respondent is female, 0 otherwise)  -0.18 -1.99 

Age indicator (1 if respondent is 40 years old or greater, 0 otherwise) 

(Standard deviation of parameter distribution) 

-0.36 

(0.49) 

-2.59 

(5.96) 

Caucasian indicator (1 if respondent is Caucasian, 0 otherwise) -0.19 -1.87 

High annual household income indicator (1 if respondent’s annual household income 

is more than $200k, 0 otherwise) (Standard deviation of parameter distribution) 

-0.39 

(0.90) 

-2.59 

(5.85) 

One-person household indicator (1 if respondent lives alone, 0 otherwise) -0.22 -1.45 

One motor-vehicle indicator (1 if respondent’s household owns or leases 1 motor-

vehicle, 0 otherwise) (Standard deviation of parameter distribution) 

0.21 

(0.61) 

1.53 

(7.22) 

Grocery store time-distance indicator (1 if respondent has less than 5 minutes but more 

than 1 mile to a grocery store, 0 otherwise) 

-0.20 -1.69 

Bikesharing registration indicator (1 if respondent is a registered user of a bikesharing 

system, 0 otherwise) 

0.16 1.72 

Threshold, µ1 1.00 16.61 

Threshold, µ2 1.42 19.43 

Threshold, µ3 2.32 19.31 

Number of observations 644  

Log-likelihood (constant only) -836.08 

Log-likelihood at convergence -817.18 
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Table 4.3. Marginal effects of the random parameters ordered probit model estimation of 

respondent’s willingness to rent a personal vehicle in order to receive a financial reward. 

 
 Average Marginal Effects 

 

Variable Description 

Extremely 

Unlikely 
Unlikely Unsure Likely 

Extremely 

Likely 

Female indicator (1 if respondent is female, 0 

otherwise) 

0.072 -0.021 -0.018 -0.026 -0.007 

Age indicator (1 if respondent is 40 years old or greater, 

0 otherwise) 

0.141 -0.047 -0.035 -0.047 -0.012 

Caucasian indicator (1 if respondent is Caucasian, 0 

otherwise) 

0.076 -0.020 -0.019 -0.028 -0.008 

High annual household income indicator (1 if 

respondent’s annual household income is more than 

$200k, 0 otherwise) 

0.156 -0.060 -0.037 -0.047 -0.011 

One-person household indicator (1 if respondent lives 

alone, 0 otherwise)  

0.091 -0.032 -0.023 -0.030 -0.007 

One motor-vehicle indicator (1 if respondent’s 

household owns or leases 1 motor-vehicle, 0 otherwise) 

-0.081 0.022 0.021 0.030 0.008 

Grocery store time-distance indicator (1 if respondent 

has less than 5 minutes but more than 1 mile to a 

grocery store, 0 otherwise) 

0.078 -0.027 -0.019 -0.026 -0.007 

Bikesharing registration indicator (1 if respondent is a 

registered user of a bikesharing system, 0 otherwise) 

-0.062 0.018 0.016 0.022 0.006 

 

Respondents who are 40 years old or greater, produced a normally distributed random 

parameter with the mean equal -0.36 and standard deviation 0.49. Although the effect of this 

variable suggests heterogeneous behavior among this group of users (as reflected by the presence 

of a statistically significant random parameter), this age group, on average, had a higher probability 

to be extremely unlikely to rent their personal vehicles to others as indicated by marginal effects 

in Table 4.3. An older age indicator has previously been identified by many researchers to be an 

important factor in determining the adoption of sharing economy systems (Diamantopoulos et al., 

2003; Li et al., 2005; Cornwell et al., 2008; Shen and Saijo, 2008; Hellwig et al., 2015).  
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Respondents who identified themselves as Caucasians had a higher probability to be 

extremely unlikely to rent their autos relative to others. Previous studies addressed, to some degree, 

the behavior differences between Caucasians and other races and found that Caucasians do not 

only have higher accessibility to automobiles (Berube et al., 2006) but were also more skeptical to 

engage in shared mobility behaviors and modes (McKenzie, 2015). The authors would like to point 

out and exercise caution with regards to including the race variable in the study. Although, 

biological concept of race has long been controversial in psychology and many psychologists have 

challenged it, other researchers have adopted it as a deductive premise and applied it as an 

inferential research factor and variable (Yee et al, 1993). From a statistical perspective, the 

Caucasian indicator is likely capturing unobserved characters associated with race such as those 

related to cumulative experiences and opportunities, media exposure, societal conditioning, and so 

on. 

Respondents from households with a high annual household income (above $200,000/year) 

produced a normally distributed random parameter with mean -0.39 and standard deviation equal 

to 0.90. Although the effect of this variable was found to vary significantly across the respondents, 

the average marginal effect equal to 0.156 (in the extremely unlikely category) suggests that the 

respondents from this group had a higher probability to be extremely unlikely to rent their personal 

vehicle to others. Other studies also found that income was a significant factor in determining the 

likelihood of engaging in shared mobility options (Shaheen et al., 2014; Woodcock et al., 2014; 

Dias et al., 2017). Psychological studies that touched upon the motivations to participate in shared 

mobility have argued that, although financial need may be a driving factor in shared mobility 

engagement, altruistic and environmentally sustainable motives could be equally important (Belk, 

2010). This could explain the non-homogenous behavior in this group as reflected by the 
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statistically significant random parameter. This heterogeneous behavior among respondents from 

higher income households could indicate an opportunity for peer-to-peer carsharing model to be 

adopted among a wide variety of socio-demographic groups as well as highlights the fact that the 

reasons to participate in sharing economy are not driven strictly by financial needs (discussed in 

detail by Wilhelms et al., 2017). 

Regarding household composition, respondents from one-person households had a higher 

probability to be extremely unlikely to rent out their personal vehicle (as indicated by marginal 

effects presented in Table 4.3). Although marginally significant, this finding likely captures higher 

auto reliance among respondents from one-person households. 

Respondents from households with only one vehicle produced a normally distributed 

random parameter with a mean 0.21 and standard deviation equal to 0.61 (recall that responses 

from respondents whose households did not own any vehicles were excluded from the analysis). 

The effect of this variable suggests there is a significant difference in behaviors among respondents 

from one-vehicle households. It could be speculated that these differences are a result of lifestyle 

choices and other aspects of decision making that are not directly addressed in the survey. That is, 

there is likely considerable variance in one-vehicle households ranging from an income-

constrained household with heavy use of their single vehicle to households choosing to own one 

vehicle as a lifestyle choice to minimize their carbon footprint, and these households may also be 

highly motivated to participate in sharing economy initiatives.  

Regarding travel patterns, the explanatory variable indicating one-way travel time to a 

grocery story of five minutes but one-way distance to a grocery store being more than one mile 

was statistically significant in the model. Other travel-related variables such as total daily travel 

time or commute distance and time were considered but they did not produce statistically 
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significant parameters. Respondents from such households (whose one-way travel time to a 

grocery store is less than five minutes but the distance is more than one mile) were found to have, 

on average, higher probability to be extremely unlikely to rent their personal vehicle. Presumably, 

this variable captures a mix of factors relating to respondents’ lifestyle choices and preferences, as 

well as residential/commercial forms and levels of traffic congestion since having quick access 

over longer distances provides information on the residential and commercial spatial distribution, 

and the status of transportation network. Grocery store location with respect to respondent’s 

residence was also statistically significant in previous papers addressing adoption of new 

technologies such as shared automated vehicles (Barbour et al., 2019b).  

Lastly, bikesharing registration indicator was found to be statistically significant in the 

model estimation results (Table 4.2). As indicated by the average marginal effects (Table 4.3), 

respondents who noted that they are registered for a bikesharing system had, on average, 0.062 

lower probability to be extremely unlikely to rent out their personal automobile and higher 

probability to belong to other willingness categories. This result offers an important insight relating 

to travel behavior and it aligns with prior studies that link shared mobility behaviors across 

multiple modes and transportation options (Barbour et al., 2019c).  

 

4.7 Discussion 

Jacoby et al. (1977) suggest that a consumer contemplating disposition of their belongings 

has three choices: keep the belonging; get rid of the belonging completely; or temporarily get rid 

of the belonging, either by loaning or renting it out. The literature that examines the motives of the 

option of temporary disposition is limited (Philip et al., 2015). Some authors (Philip et al., 2015) 

found that the providers in peer-to-peer sharing were primarily motivated by economic 
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considerations, which is consistent with prior literature (Wilhelms et al., 2017) and to some degree 

consistent with the results presented herein. Current research found considerable heterogeneity 

among people from households with relatively high annual income (more than $200,000). This 

finding suggests that renting enables usage of their idle possessions, which many providers find 

gratifying even in the absence of financial need. Other research, such as that of Bardhi and 

Eckhardt (2012), found that temporary disposition of one’s belongings also provides a way to 

protect the environment and reduce waste.  

Another interesting finding is the fact that female respondents were found to be more likely 

to be extremely unlikely to rent their personal vehicle. This finding is also reflected in prior 

literature (Shaheen et al., 2018) and it could reveal higher reliance on personal vehicles by female 

users or, in other words, a lack of other transportation options that could substitute a personal 

vehicle. Women’s mobility has been extensively studied and a large body of research has 

confirmed that women do not have the same mobility patterns, mobility needs, or face the same 

dangers compared to their male counterparts (Dunckel-Graglia, 2013; Mazumder and Pokhare, 

2019). Gender differences that have been found across the transportation literature reflect a much 

wider issue. The novelty is in the fact that gender inequity in transportation can be now studied 

simultaneously with the introduction of new modes and business models, which provide an 

opportunity for immediate improvement.  

 

4.8 Summary and Conclusions 

This research offers some initial perspectives on factors affecting people’s willingness to 

share their personal vehicles. It explores the role of socio-demographic characteristics coupled 

with travel patterns and travel behavior factors to identify the key variables that play a role in 
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likelihood of renting a personal vehicle to others. Caucasian female respondents who live in one-

person households and have less than five minutes one-way travel time but more than one-mile 

distance to a grocery store had a higher probability to be extremely unlikely to rent their personal 

vehicle to receive a monetary compensation in exchange. In contrast, respondents who indicated 

to be registered users of a bikesharing system, were found to have a lower probability to be 

extremely unlikely to rent their personal automobiles. The variables that found to have 

heterogeneous effects across respondents (as reflected by the presence of statistically significant 

random parameters) were age (at least 40 years old), high annual household income (above 

$200,000), and households that owned only one motor-vehicle.  

Based on the above findings and the fact that there is no national consensus as to how to 

approach and regulate the peer-to-peer carsharing model, and it is clear that a few policy-related 

matters must be addressed for the peer-to-peer business model to be successful. The fact remains 

that changes in consumer behavior and disruptions in the transportation system pose considerable 

challenges for the car industry and policy makers. As Prieto et al. (2017) point out, peer-to-peer 

carsharing reveals a potential market that is far less segmented than standard carsharing services. 

This suggests that peer-to-peer carsharing services are potentially more promising than traditional 

carsharing because they can potentially appeal to a much broader demographic. Still, studies have 

shown that policies that support carsharing are needed to ensure success (Kim, 2015). 

From the insurance perspective, some insurance companies currently exclude coverage if 

insured vehicles are used for peer-to-peer carsharing, which forces vehicle suppliers to take on 

alternate insurance or purchase additional coverage. The lack of affordable insurance policies may 

clearly be a detriment to the expansion of peer-to-peer carsharing. Additionally, peer-to-peer 

carsharing companies are in direct competition with traditional rental-car companies which operate 



82 

  

at airports and other locations where they need to rent out office space and enough area to store 

their vehicles. Peer-to-peer carsharing operators also deliver vehicles to customers at the airports, 

but they are not burdened with such overhead costs and therefore may have an inherent competitive 

advantage. While there have been attempts to regulate this issue, a national policy was not yet been 

established. Finally, there is clearly environmental, economic, and social value in utilizing 

individuals’ personal resources and the findings of this study suggest that the motivation to share 

such resources is not driven wholly by financial reasons, which opens up additional policy 

dimensions. For example, the findings indicate that female respondents are more likely to be 

extremely unlikely to rent their personal vehicle, and thus potentially miss out on opportunities for 

additional income. Prieto et al. (2017) also concluded that being male increases the probability of 

using peer-to-peer sharing. Same authors also found indication that peer-to-peer users have fewer 

safety concerns and find more flexibility in arranging car trips through peer-to-peer platforms. 

Being aware of the unfairness of current transportation system when it comes to accessibility and 

safety across genders, policies that would equalize the opportunities are suggested. This implies 

the need for developing appropriate policies that would address potential gender-related equality 

issues related to peer-to-peer carsharing. 

Overall, the findings must be used with caution because people’s opinions, perceptions, 

and preferences regarding peer-to-peer carsharing will likely be changing as they become more 

familiar with this type of carsharing and additional policies are formed.  Sheela and Mannering 

(2020) provide statistical evidence of such changing opinions, perceptions, and preferences in their 

study of autonomous vehicle adoption, and peer-to-peer carsharing could follow the same pattern.  

Finally, it is important to consider the limitations of the study and to point out that, although 

this research did not consider the price point at which an individual becomes willing to rent their 
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vehicle (as this price point will vary for each user), it made an assumption that the individual 

willing to rent their vehicle would be satisfied with the compensation (which is consistent with 

some of the business models that allow for flexible pricing). Another limitation is the overall lack 

of popularity and consequently understanding of this business model by general public. Because 

of the very fluid and uncertain regulations as well as the vagueness about the state of practice, 

there were likely varied levels of understanding of how peer-to-peer carsharing works and that 

lack of understanding could be playing a role in some of the responses. 
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Chapter 5 
 

A temporal analysis of driver-injury severities in crashes 

involving aggressive and non-aggressive driving 
 

Mouyid Islam, Fred Mannering 

5.1. Introduction 

Aggressive driving is identified by a wide range of unsafe driving decisions that endanger 

the safety of drivers and other road users. The Fatality Analysis Reporting Systems indicates that 

about 53% of fatal crashes are due to aggressive driving (AAA Foundation for Traffic Safety, 

2016). Moreover, a driver survey conducted by the American Automobile Association (AAA) 

Foundation for Traffic Safety in 2011 indicated that about 90% of the drivers viewed aggressive 

driving as a very serious or somewhat serious threat to their own safety (AAA Foundation for 

Traffic Safety, 2011). The National Highway Traffic Safety Administration (NHTSA) defines 

aggressive driving as a combination of moving traffic offenses to endanger other persons or 

property. In the state of Florida, aggressive driving is identified if at least two of the following 

occurs: speeding, unsafe or improper lane change, following too closely, failure to the yield right 

of way, improper passing, and failure to obey traffic control devices (FDOT, 2019). Likewise, 

New York State defines an aggressive driver as one who operates a motor vehicle in a selfish, 

bold, or pushy manner, without regard for the rights or safety of the other users of the streets and 

highways (NYSDOT, 2019). AAA Foundation for Traffic Safety (2009) defined aggressive 

driving as any unsafe driving behavior, performed deliberately and with ill-intention or disregard 

for safety. Tasca (2000) characterized aggressive driving as deliberate behavior, likely to increase 

the risk of collision that is motivated by impatience annoyance, hostility and/or attempt to save 

time. Other studies have suggested it is behavior that is intended to hurt others (Galovski and 
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Blanchard, 2002) or an act that disregards safety, irrespective of the deliberate intent of 

endangering others (AAA Foundation for Traffic Safety, 2009).  

While definitions clearly vary, there is general agreement that aggressive driving 

encompasses a wide variety of driver actions including headlight flashing (Diekmann et al., 1996; 

Ellison-Potter et al., 2001; Turner et al. 1975), yelling at other drivers (Hennessy and Wiesenthal, 

1999; Tasca, 2000), and profanity and obscene gestures (Ellison-Potter et al., 2001; Sarkar et al., 

2000; Turner et al., 1975) which often lead to transgressive behavior that include speeding (James 

and Nahl, 2000), running stop signs and red lights (James and Nahl, 2000; Tasca, 2000) and 

tailgating (Diekmann et al., 1996; Ellison-Potter et al., 2001; Turner et al., 1975).6 Officers at the 

scene of a crash often identify the presence of aggressive driving by recognizing its correlation to 

speeding and other forms of traffic violations, as well as the level of driver frustration with the 

driving environment (traffic congestion) and expressions of anger (Neuman et al., 2003). 

Susceptibility to aggressive driving has been linked to numerous factors including fatigue, 

personality traits (including disregard for others, habitual/clinical behavior, disregard for the law, 

etc.), and stress (Stuster, 2004; Oz et al., 2010; Taylor and Dorn, 2006; Jovanovic et al., 2011; 

Alfonso et al., 2016).7  

To study aggressive driving behavior and its impacts, several research efforts have used 

moving vehicles or fixed cameras (Kaysi and Abbany, 2007; Paleti et al., 2010; Tarko et al., 2011), 

while other studies have explored identifying aggressive driving behavior patterns with the use of 

driving simulation and survey data (Al-Shihabi and Mourant, 2007; Harder et al., 2008; AAA 

 
6 Interestingly, some authors have argued and categorized ‘aggressive driving’ and ‘road rage’ are synonymous, but 

there is clear distinction between them with road rage being associated with specific unlawful criminal behaviors 

(Shinar, 1998). 
7 It should be noted that some have argued that aggressive driving can be related self-defense and aggression as part 

of the human survival mechanism (Lang and Bradley, 2013). 



86 

  

Foundation for Traffic Safety, 2009; Philippe et al., 2009; Rong et al., 2011; Calvi et al., 2012; 

Joanisse et al., 2013; Ouimet et al., 2013; Sarwar et al., 2017). Other studies have investigated 

aggressive driving behavior from traditional crash data (Paleti et al., 2019), driving simulation 

studies (Sarwar et al., 2017; Fountas et al., 2019), observational studies of traffic (Tarko et al., 

2011), and assessments of study/survey participants (Alonso et al., 2019; Nesbit and Conger, 2012; 

Berdoulat et al., 2012).  

Table 5.1 provides a summary of factors that past research efforts have shown to be 

associated with aggressive driving. This table indicates that a wide variety of variables relating to 

driver characteristics and actions, and vehicle, roadway and crash characteristics have been found 

to be associated with aggressive driving. The intent of the current study is to use the findings of 

past research as a basis for understanding how aggressive driving affects injury-severity outcomes. 

Because past research has shown aggressive driving is induced, at least in part, by factors that vary 

over time (changes in traffic congestion, driver frustration and other temporally varying factors8), 

we are particularly interested in studying how the effect of variables influencing injury-severity 

outcomes in aggressive-driving crashes change over time. These results will also be benchmarked 

against the injury-severity outcomes in crashes that do not involve aggressive driving. To do this, 

focus will be directed toward an assessment of driver-injury severities in single-vehicle crashes 

with a statistical comparison between resulting injury severities in crashes involving aggressive 

and non-aggressive driving over time.9  

  

 
8 There is also the possibility that aggressive driving could be significantly affected by changes in economic 

conditions which would vary over time. For example, Abay and Mannering (2016) provided empirical evidence 

showing a statistically significant relationship between risk taking in driving and finances.  
9 The emphasis on single-vehicle crashes is to focus specifically on driver error without complicating the analysis by 

introducing the potential responses of other involved drivers in multivehicle crashes. 



87 

  

Table 5.1. Variables found to be statistically significant indicators of aggressive driving in past 

studies.  

Variables Findings 

Driver characteristics 

Age Young drivers (16-20 years) were found to be more likely to drive aggressively 

under the influence of alcohol relative older drivers (Paleti et al., 2010); less 

than 45 years old drivers were found to be more likely to drive aggressively 

(Beck et al., 2006; Vanlaar et al., 2008); less than 26 years old drivers were 

found to be more likely to involved in aggressive driving, 18-24 years drivers 

were found to be likely to exhibit more aggressive driving (Kaiser et al., 2016) 

Gender Male drivers were found to be more likely to involved in aggressive driving 

(Paleti et al., 2010; Berdoulat et al., 2013),  

Behaviors Urgency, lack of premeditation, and lack of perseverance heave led to 

aggressive driving (Loo, 1979; Stanford et al., 1996; Berdoulat et al., 2013). 

High anger drivers or personality characteristics with predisposed to aggression 

were found to be more likely to engage in aggressive and risky behaviors 

(Burns and Wilde, 1995; Jonah, 1997; Vavrik, 1997; Deffenbacher et al., 2000, 

2003; Iversen and Rundmo, 2002; Wells-Parker et al., 2002). Fatigue and 

distraction also contribute to aggressive driving (Fountas et al., 2019) 

Experiences Inexperienced drivers with low mileage were found to report more irritation for 

others’ direct hostility than more experienced drivers (Bjorklund, 2008); 

experienced drivers licensed for 6 or more years were found to exhibit less 

aggressive driving behavior (Sarwar et al., 2017) 

Driver actions 

Traffic violations Tailgating, flashing lights, honking at drivers blocking the driveway, waving in 

and out of traffic, cutting in front of other traffic, running red light/ stop sign 

(Shinar, 1998; Bjorklund, 2008; Tarko et al., 2011) 

Temporal characteristics 

Peak hours Time between 6 to 9 AM has found to have possible correlation with aggressive 

driving behavior. (Paleti et al., 2010), the frequency of aggressive driving is 

higher when the value of time is higher (rush hours) (Shinar and Compton, 

2004), rushing to destination showed aggressive driving behavior (Sarwar et al., 

2017) 

Vehicle characteristics 

Vehicle type Drivers of sport-utility vehicles and pickup trucks were found to be more likely 

to be involved in aggressive behaviors (Paleti et al., 2010) 

Roadway attributes  

Speed limits Low- (less than 50 km/hr) and high-speed limits (more than 90 km/hr) were 

found to be positively related to aggressive driving behaviors (Paleti et al., 

2010) 

Crash characteristics 

Fixed object crash Due to aggressive driving, fixed object crashes have been found to be more 

likely to occur (Paleti et al., 2010) 
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The chapter begins with a description of the available crash data. This is followed by a 

presentation of the methodological approach and estimation results, which include statistical tests 

for differences in aggressive and non-aggressive driver-injury outcomes, and tests for temporal 

instability in aggressive driving injury severities. Model estimation results are then presented and 

discussed, with a comparison and discussion of marginal effects, and the chapter concludes with a 

summary of findings and their implications. 

 

5.2 Data Description 

Data available for this study were crashes reported in the Florida Crash Analysis Reporting 

system (these are all police-reported crashes). For the purposes of this study, crash data were 

gathered over the three-year period from January 1, 2015, to December 31, 2017. Crash data 

filtered from the Florida Crash Analysis Reporting data system were linked with a vehicle and 

person dataset based on crash identification numbers. A police-officer defined variable in the crash 

data indicating the driver’s actions at the time of crash being "operated the motor vehicle in 

erratic/reckless and aggressive manner" was considered aggressive driving.10 The resulting 

combined dataset provided detailed information about the crash, including roadway 

characteristics, as well as vehicle and person characteristics. The combined dataset was filtered for 

single-vehicle aggressive driving related crashes, which resulted in a total of 2,531 observations 

over the studied three-year period. While the single-vehicle non-aggressive driving related crashes 

resulted in 64,082 observations in the same analysis period.  

 
10 The determination of whether the vehicle is being operated in erratic/reckless and aggressive manner is made by 

police-officers, all of whom are trained to identify such behavior. The authors acknowledge that other definitions 

of aggressive driving may also be appropriate, depending on available data. 
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Information available in the data includes the resulting injury severity of the driver (no 

injury, possible injury, non-incapacitating injury, incapacitating injury and fatality), type of 

vehicle, driver actions (evasive maneuvers, etc.), driver information (age, gender, usage of safety 

equipment, influence of alcohol, drug use), information relating to the time and location of the 

crash, roadway class, road surface condition, weather and light conditions, type of vehicles, lane 

and shoulder widths, median width, location of harmful events, traffic volume, percent of trucks, 

and so on.  

 

5.3 Methodology  

To account for possible unobserved heterogeneity in the statistical analysis of injury-

severity data, more recent research has focused on random parameter approaches (Milton et al., 

2008; Eluru et al., 2008; Morgan and Mannering, 2011; Anastasopoulos and Mannering, 2011; 

Kim et al., 2013; Venkataraman et al., 2013; Islam and Hernandez, 2013; Behnood and Mannering, 

2015), latent class models (Behnood et al., 2014; Cerwick et al., 2014; Shaheed and Gkritza, 2014; 

Yasmin et al., 2014), a combination of the two (Xiong and Mannering, 2013), random parameters 

with heterogenity in means and variances (Behnood and Mannering 2017a, 2017b; Seraneeprakarn 

et al., 2017; Behnood and Mannering, 2019), and Markov switching models (Malyshkina and 

Mannering, 2009; Xiong et al., 2014). Savolainen et al. (2011), Mannering and Bhat (2014) and 

Mannering et al. (2016) provide a review of the statistical appraoches used to study crash-injury 

severities. 

In this study, a random parameters logit model that accounts for possible heterogeneity in 

the means and variances of the random parameters is used to address possible unobserved 

heterogeneity. The injury severity of drivers in single-vehicle aggressive and non-aggressive 
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crashes is considered with possible injury outcomes of no injury, minor injury (possible injury and 

non-incapacitating injury) and severe injury (incapacitating injury and fatality). Following recent 

work, the modeling approach starts by defining a function that determines injury-severity, 

kn k kn knS = + β X      (5.1) 

where Skn is an injury-severity function determining the probability of injury-severity outcome k 

in crash n, Xkn is a vector of explanatory variables that affect aggressive and non-aggressive 

drivers’ injury-severity level k, βk is a vector of estimable parameters, and εkn is the error term. If 

this error term is assumed to be generalized extreme value distributed, a standard multinomial logit 

model results as (McFadden, 1981), 

( )
 

( )
k in

n

k In

K

EXP
P k    

EXP


=


β X

β X
     (5.2) 

where Pn(k) is the probability that aggressive and non-aggressive driving related crash n that will 

result in driver-injury severity outcome k and K is the set of the three possible injury-severity 

outcomes. To allow the possibility of one or more parameter estimates in the vector βk vary across 

crash observations Equation 2 can be rewritten as (Train, 2009; Washington et al., 2020) 

( )
( )

( )
( )k kn

n k k k

k kn

K

EXP
P k f | d

EXP


=  

β X
β φ β

β X
    (5.3) 

where f(βk|φk) is the density function of βk and φk is a vector of parameters describing the density 

function (mean and variance), and all other terms are as previously defined.  

To account for the possibility of unobserved heterogeneity in the means and variances of 

parameters, let βkn be a vector of estimable parameters that varies across crashes defined as 

(Mannering et al., 2016; Seraneeprakarn et al., 2017; Behnood and Mannering, 2017b; Waseem et 
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al., 2019; Alnawmasi and Mannering, 2019; Behnood and Mannering, 2019; Washington et al., 

2020): 

( )kn kn kn kn kn kn kn 
 +  EXP   =   +   β Z W     (5.4) 

where β is the mean parameter estimate across all crashes, Zkn is a vector of crash-specific 

explanatory variables that captures heterogeneity in the mean that affects aggressive and non-

aggressive drivers’ injury-severity level k, Θkn is a corresponding vector of estimable parameters, 

Wkn is a vector of crash-specific explanatory variables that captures heterogeneity in the standard 

deviation σkn with corresponding parameter vector Ψkn, and vkn is a disturbance term. 

During model estimation, numerous density functions were empirically evaluated for the 

term f(βk|φk). None were found to be statistically superior to the normal distribution, so this was 

used in all model estimations (this finding is consistent with past work including Milton et al., 

2008; Alnawmasi et al., 2019 and others). All model estimations used simulated maximum 

likelihood with 1,000 Halton draws (McFadden and Train, 2000; Bhat, 2001; Train, 2009). 

Marginal effects were computed to determine the effect of explanatory variables on injury-severity 

probabilities. The marginal effect provides the effect that a one-unit increase in an explanatory 

variable has on the injury-outcome probabilities. The average marginal effect over all crash 

observations will be reported. 

 

5.4 Likelihood Ratio Tests 

There is an extensive body of literature that suggests that the effect of factors determining 

injury severity may change over time (Mannering, 2018). For example, Behnood and Mannering 

(2015) found that the effect that roadway characteristics, vehicle characteristics, and driver 

characteristics had on resulting driver-injury severities in Chicago varied significantly from one 
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year to the next from 2004 to 2012. Subsequent work from these authors (Behnood and Mannering, 

2016), showed similar temporal instability in pedestrian injuries resulting from vehicle accidents 

in Chicago. In other work, Alnawmasi and Mannering (2019) found similar results for motorcyclist 

injuries in Florida, with temporal instability observed in data from 2012 to 2016; Behnood and 

Mannering (2019) found temporal instability among injuries induced by crashes involving truck 

in Los Angeles from 2010-17; and Islam et al. (2019) found temporal instability in Florida work-

zone crashes from 2012-17.  

Given this, tests are not only conducted for differences between injury outcomes in crashes 

involving aggressive and non-aggressive driving, but also for temporal instability. This is done by 

running a series of likelihood ratio tests. To begin, for each year in the data (2015, 2016, and 2017) 

tests were conducted comparing aggressive and non-aggressive injury-severity outcomes. The test 

statistic is,  

( ) ( ) ( )2

, , ,2t combined t non aggressive t aggressive tX LL LL LL−
 = − − − −
 

β β β   (5.5) 

where, LL(βcombined,t) is the log-likelihood at the convergence of the model that used all of the 

available aggressive and non-aggressive driving data in year t (either years 2015, 2016 or 2017), 

LL(βnon-aggressive,t) is the log-likelihood at convergence of the model based on non-aggressive 

driving data only in year t, and LL(βaggressive,t) is the log-likelihood at the convergence of a model 

based on aggressive driving data only in year t. For the years 2015, 2016 and 2017 the model 

estimates gave an X2 values of 171.256, 51.31, and 152.75, respectively. These values are all χ2 

distributed with 20 degrees of freedom give us 99.99% confidence that the null hypothesis that the 

non-aggressive and aggressive driving parameters are equal, can be rejected. 

Next, the temporal stability of aggressive and non-aggressive injury-severity outcomes is 

tested with the likelihood ratio test in this case,  
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2

2015 17, 2015, 2016, 2017,2 ( ) ( ) ( ) ( )g g g g gX LL LL LL LL−
 = − − − − β β β β    (5.6) 

where, LL(β2015-17,g) is the log-likelihood at the convergence of the driver injury-severity model 

that used all data 2015 to 2017 for driver group g (either aggressive or non-aggressive driving 

data), LL(β2015,g) is the log-likelihood at convergence of the model using only 2015 data for driver 

group g, LL(β2016,g) is the log-likelihood at the convergence of the model using only 2016 data for 

driver group g, and LL(β2017,g) is the log-likelihood at the convergence of the model using only 

2017 data for driver group g. For crashes involving aggressive drivers, model estimates gave an 

X2 of 42.02 which is χ2 distributed with 23 degrees of freedom (the number of parameters found to 

be statistically significant in the model using all data years, 2015-17). This χ2 value gives 99% 

confidence that the null hypothesis that the parameters are equal parameters over these three years 

(2015, 2016 and 2017) can be rejected. For crashes involving non-aggressive drivers, model 

estimates gave an X2 of 26.73 which is χ2 distributed with 19 degrees of freedom (the number of 

parameters found to be statistically significant in the model using all data years, 2015-17). This χ2 

value gives 89% confidence that the null hypothesis that the parameters are equal parameters over 

these three years (2015, 2016 and 2017) can be rejected. These tests suggest temporal instability 

is clearly present in aggressive driving crashes, and to a lesser extent in non-aggressive driving 

crashes.11 

 

5.5 Model Estimation Results 

Figure 5.1 illustrates the percent distribution of severe, minor and injury crashes for 

aggressive and non-aggressive drivers over the three-year analysis period (2015-17). This figure 

 
11 Multiple combinations of years were also tested as part of the temporal instability tests, but likelihood ratio tests 

indicate that the separate-year models where statistically justified. 
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shows that, while there is not much variation in the aggregate injury-severity totals over time, there 

is a noticeable difference between aggressive and non-aggressive driver injuries with aggressive 

drivers being much more involved in crashes resulting in injury, particularly severe injury. Table 

5.2 provides the summary statistics of all explanatory variables found to be statistically significant 

in one or more of the six models estimated (aggressive and non-aggressive models for each of the 

three years analyzed). 

 

 
Figure 5.1. Driver Injury Severity for Aggressive and Non-Aggressive Driving over the Years: 

2015 – 2017.  
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Table 5.2. Aggressive-driver descriptive statistics (non-aggressive driver statistics in parentheses) of variables found to significantly 

influence severity-outcome probabilities. 

Variable 
2015 2016 2017 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Spatial characteristics 
      

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) 0.129 

(0.164) 

0.336 

(0.370) 

0.144 

(0.175) 

0.351 

(0.380) 

0.128 

(0.172) 

0.334 

(0.377) 

District 5 indicator (1 if crash occurred in District 5, 0 otherwise) 0.192 

(0.154) 

0.394 

(0.361) 

0.176 

(0.155) 

0.381 

(0.362) 

0.178 

(0.163) 

0.382 

(0.369) 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) 0.092 

(0.154) 

0.290 

(0.361) 

0.110 

(0.142) 

0.313 

(0.349) 

0.106 

(0.150) 

0.308 

(0.357) 

District 7 indicator (1 if crash occurred in District 7, 0 otherwise) 0.154 

(0.134) 

0.361 

(0.341) 

0.123 

(0.131) 

0.329 

(0.338) 

0.140 

(0.127) 

0.347 

(0.333) 

Roadway characteristics 
      

Urban principal arterial indicator  

(1 if crash occurred on urban principal arterials, 0 otherwise) 

0.129 

(0.181) 

0.336 

(0.385) 

0.129 

(0.180) 

0.335 

(0.384) 

0.147 

(0.134) 

0.354 

(0.341) 

Dry surface indicator (1 if road surface condition was dry, 0 

otherwise) 

0.836 

(0.720) 

0.370 

(0.448) 

0.831 

(0.750) 

0.374 

(0.433) 

0.842 

(0.747) 

0.364 

(0.434) 

Wet surface indicator  

(1 if road surface condition was wet, 0 otherwise) 

0.111 

(0.157) 

0.315 

(0.364) 

0.117 

(0.131) 

0.322 

(0.337) 

0.102 

(0.130) 

0.303 

(0.337) 

Straight roadway section indicator  

(1 if straight section of the roadway, 0 otherwise) 

0.796 

(0.907) 

0.402 

(0.289) 

0.825 

(0.912) 

0.379 

(0.283) 

0.812 

(0.911) 

0.390 

(0.283) 

Curved segment indicator (1 if roadway curves to the right or left of 

travel direction, 0 otherwise) 

0.193 

(0.089) 

0.394 

(0.285) 

0.170 

(0.085) 

0.376 

(0.279) 

0.182 

(0.085) 

0.386 

(0.279) 

Narrow shoulder width indicator  

(1 if shoulder width is below 4 ft, 0 otherwise) 

0.149 

(0.225) 

(0.356) 

(0.418) 

0.165 

(0.228) 

0.372 

(0.419) 

0.128 

(0.107) 

0.334 

(0.309) 

Wider shoulder width indicator  

(1 if shoulder width is between 8 to 12 feet, 0 otherwise) 

0.047 

(0.169) 

0.212 

(0.375) 

0.049 

(0.162) 

0.217 

(0.369) 

0.031 

(0.085) 

0.175 

(0.279) 

Crash characteristics 
      

Collision with roadside fixed object indicator (1 if collided with 

roadside fixed object as the first harmful event, 0 otherwise) 

0.600 

(0.263) 

0.489 

(0.440) 

0.562 

(0.265) 

0.496 

(0.441) 

0.547 

(0.260) 

0.497 

(0.438) 

Collision with non-fixed object indicator (1 if collided with non-fixed 

object as the first harmful event, 0 otherwise) 

0.231 

(0.595) 

0.421 

(0.490) 

0.269 

(0.596) 

0.444 

(0.490) 

0.279 

(0.607) 

0.448 

(0.488) 
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Non-colliding object indicator (1 if first harmful event was identified 

as non-colliding object such as a rollover, etc., 0 otherwise) 

0.111 

(0.095) 

0.315 

(0.293) 

0.107 

(0.093) 

0.310 

(0.291) 

0.126 

(0.088) 

0.332 

(0.284) 

On-road as harmful event location indicator  

(1 if harmful event occurred inside the roadway, 0 otherwise) 

0.268 

(0.680) 

0.443 

(0.466) 

0.248 

(0.684) 

0.432 

(0.464) 

0.278 

(0.683) 

0.448 

(0.465) 

Off-road as harmful event location indicator  

(1 if harmful event occurred outside the roadway, 0 otherwise) 

0.464 

(0.160) 

0.498 

(0.366) 

0.474 

(0.164) 

0.499 

(0.370) 

0.489 

(0.167) 

0.499 

(0.373) 

Driver characteristics 
      

Exceeding speed limit by more than 10 mi/h indicator (1 if travel 

exceeded the speed limit by more than 10 mi/h, 0 otherwise) 

0.448 

(0.016) 

0.497 

(0.127) 

0.458 

(0.015) 

0.498 

(0.125) 

0.413 

(0.015) 

0.492 

(0.123) 

Suspected Alcohol use indicator  

(1 if alcohol use is suspected in the crash involved driver, 0 otherwise) 

0.318 

(0.010) 

0.466 

(0.100) 

0.268 

(0.008) 

0.443 

(0.093) 

0.275 

(0.010) 

0.446 

(0.100) 

Younger aged driver indicator (1 if driver age below 30, 0 otherwise) 0.655 

(0.337) 

0.475 

(0.472) 

0.618 

(0.338) 

0.485 

(0.473) 

0.608 

(0.330) 

0.488 

(0.470) 

Middle aged driver indicator  

(1 if driver age between 30 to 49 years, 0 otherwise) 

0.271 

(0.354) 

0.444 

(0.478) 

0.271 

(0.350) 

0.444 

(0.477) 

0.286 

(0.355) 

0.452 

(0.478) 

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) 0.512 

(0.893) 

0.499 

(0.308) 

0.566 

(0.902) 

0.495 

(0.296) 

0.567 

(0.906) 

0.495 

(0.291) 

Zero blood alcohol content (BAC) indicator  

(1 if BAC is zero in the crash involved driver, 0 otherwise)  

0.872 

(0.997) 

0.333 

(0.054) 

0.899 

(0.997) 

0.300 

(0.051) 

0.904 

(0.996) 

0.293 

(0.060) 

Vehicle characteristics 
      

Passenger car involvement indicator  

(1 if passenger car being involved in the crash, 0 otherwise) 

0.620 

(0.549) 

0.485 

(0.497) 

0.642 

(0.544) 

0.479 

(0.498) 

0.610 

(0.532) 

0.487 

(0.498) 

Sport Utility Vehicle (SUV) involvement indicator  

(1 if SUV being involved in the crash, 0 otherwise) 

0.144 

(0.139) 

0.351 

(0.346) 

0.123 

(0.148) 

0.329 

(0.356) 

0.137 

(0.155) 

0.344 

(0.362) 

Traffic characteristics 
      

Low traffic condition indicator  

(1 if AADT is below 4,000 veh/day, 0 otherwise) 

0.192 

(0.280) 

0.394 

(0.449) 

0.211 

(0.288) 

0.408 

(0.453) 

0.137 

(0.125) 

0.344 

(0.331) 

Temporal characteristics 
      

Weekday indicator  

(1 if crash occurred during the weekdays, 0 otherwise) 

0.640 

(0.721) 

0.479 

(0.448) 

0.598 

(0.727) 

0.490 

(0.445) 

0.643 

(0.726) 

0.478 

(0.445) 

Weekend indicator (1 if crash occurred during the weekend, 0 

otherwise) 

0.359 

(0.278) 

0.479 

(0.448) 

0.401 

(0.272) 

0.490 

(0.445) 

0.356 

(0.273) 

0.478 

(0.445) 

Early morning indicator (1 if crash occurred between midnight to 

6AM, 0 otherwise) 

0.310 

(0.141) 

0.462 

(0.348) 

0.329 

(0.144) 

0.470 

(0.351) 

0.340 

(0.142) 

0.473 

(0.349) 
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Model estimation results for aggressive drivers are presented in Tables 5.3, 5.4 and 5.5 for 

the years 2015, 2016 and 2017, respectively. The models have reasonably good overall statistical 

fit with ρ2 values of 0.229, 0.246 and 0.242 for 2015, 2016 and 2017, respectively. Note that for 

the 2015, 2016 and 2017 models, the constant term specific to minor injury was found to be the 

only statistically significant random parameter, and in all cases this parameter had statistically 

significant heterogeneity in the mean and variance. For all three years, it was found that the mean 

varied by whether the first harmful event was identified as non-colliding object (such as a rollover, 

etc.). In all three years, having the first harmful event being non-colliding object increased the 

mean of the random parameter making minor injury more likely and other injury levels less likely. 

In 2015 (Table 5.3) the variance of the constant for minor injury was a function of a low-traffic 

volume indicator, with traffic volumes less than 4000 veh/day increasing the minor-injury constant 

variance and reflecting high variability among low-volume roads for aggressive drivers. In 2016 

(Table 5.4) the variance was a function of the dry-surface indicator, with crashes occurring on dry 

roads increasing the variance of the minor-injury constant. Finally, in 2017 (Table 5.5) the minor-

injury constant variance was a function of the weekend indicator, with greater variance in the 

minor-injury constant for crashes that occurred on weekends for aggressive drivers. 

Model estimation results for non-aggressive drivers are presented in Tables 5.6, 5.7 and 

5.8 for the years 2015, 2016 and 2017, respectively. The models have noticeably better fit than 

their aggressive driving counterparts with ρ2 values of 0.559, 0.549 and 0.557 for 2015, 2016 and 

2017, respectively. As was the case for the aggressive drivers, for the 2015, 2016 and 2017 models, 

the constant term specific to minor injury was found to be the only statistically significant random 

parameter and this parameter again had statistically significant heterogeneity in the mean and 

variance. For all three years, it was found that the mean varied by the driver’s blood alcohol 
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Table 5.3. Model results of mixed logit with heterogeneity in means and variance for aggressive driving in single-vehicle crashes in 

Florida 2015.  

Variable* 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -1.277 -4.29  

Random parameter (normally distributed)       

Constant [MI] 

(Standard deviation of parameter distribution) 

-3.603 

(3.949) 

-2.23 

(2.24) 

   

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Non-colliding object indicator (1 if first harmful event was identified as 

non-colliding object such as a rollover, etc., 0 otherwise) 

3.417 2.31    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Low traffic volume  

(1 if traffic volume less than 4000 veh/day, 0 otherwise) 

0.670 2.17    

Spatial characteristics  
     

District 7 indicator (1 if crash occurred in District 7, 0 otherwise) [NI] -0.518 -1.81 -0.0117 0.0046 0.0071 

Roadway characteristics 
     

Urban principal arterial indicator  

(1 if crash occurred on urban principal arterials, 0 otherwise) [SI] 

0.674 1.99 -0.0081 -0.0010 0.0092 

Straight roadway section indicator (1 if straight section of the roadway, 0 otherwise) [SI] -0.558 -1.94 0.0306 0.0043 -0.0349 

Wet road surface indicator (1 if crash occurred on wet surface, 0 otherwise) [NI] -0.539 -1.67 -0.0086 0.0033 0.0053 

Crash characteristics  
     

Collision with roadside fixed object indicator  

(1 if collided with roadside fixed object as the first harmful event, 0 otherwise) [MI] 

1.018 1.68 -0.0356 0.0426 -0.0070 

Driver characteristics 
     

Exceeding speed limit by more than 10 mi/h indicator  

(1 if travel exceeded the speed limit by more than 10 mi/h, 0 otherwise) [MI] 

1.535 2.12 -0.0431 0.0521 -0.0089 

Suspected Alcohol use indicator  

(1 if alcohol use is suspected in the crash involved driver, 0 otherwise) [SI] 

0.932 3.76 -0.0289 -0.0045 0.0334    

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) [NI] 1.401 5.48 0.0781 -0.0411 -0.0370 

Number of observations 885 
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Number of estimated parameters 14 

Log-likelihood at zero -972.27 

Log-likelihood at convergence -749.08 

ρ2 = 1 – LL(β)/LL(0) 0.229 

*SI = Severe Injury; MI = Minor Injury; NI = No Injury  
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Table 5.4. Model results of mixed logit with heterogeneity in means and variance for aggressive driving in single-vehicle crashes in 

Florida 2016.  

Variable* 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -1.631 -6.25  

Random parameter (normally distributed)  
     

Constant [MI] 

(Standard deviation of parameter distribution) 

-2.347 

(2.535) 

-2.43 

(1.84) 

   

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Non-colliding object indicator (1 if first harmful event was identified as 

non-colliding object such as a rollover, etc., 0 otherwise) 

2.446 2.20    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Dry surface indicator  

(1 if crash occurred on dry road surface, 0 otherwise) 

0.752 2.14    

Spatial characteristics  
     

District 7 indicator (1 if crash occurred in District 7, 0 otherwise) [MI] -1.822 -1.88 0.0098 -0.0124 0.0025 

Roadway characteristics 
     

Harmful event location indicator  

(1 if harmful event occurred inside the roadway, 0 otherwise) [SI] 

0.715 2.27 -0.0133 -0.0024 0.0158 

Curved segment indicator  

(1 if roadway curves to the right or left of travel direction, 0 otherwise) [NI] 

-0.640 -2.14 -0.0157 0.0058 0.0099 

Wet road surface indicator (1 if crash occurred on wet surface, 0 otherwise) [MI] 1.374 1.86 -0.0144 0.0172 -0.0028 

Crash characteristics  
     

Collision with non-fixed object indicator  

(1 if collided with non-fixed object as the first harmful event, 0 otherwise) [SI] 

-1.571 -3.73 0.0122 0.0016 -0.0139 

Driver characteristics 
     

Exceeding speed limit by more than 10 mi/h indicator  

(1 if travel exceeded the speed limit by more than 10 mi/h, 0 otherwise) [NI] 

-0.765 -3.11 -0.0482 0.0188 0.0294 

Suspected Alcohol use indicator  

(1 if alcohol use is suspected in the crash involved driver, 0 otherwise) [SI] 

0.571 1.94 -0.0115 -0.0020 0.0135 

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) [NI] 1.587 5.77 0.0893 -0.0518 -0.0376 
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Number of observations 826 

Number of estimated parameters 14 

Log-likelihood at zero -907.45 

Log-likelihood at convergence -684.33 

ρ2 = 1 – LL(β)/LL(0) 0.246 

*SI = Severe Injury; MI = Minor Injury; NI = No Injury  
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Table 5.5. Model results of mixed logit with heterogeneity in means and variance for aggressive driving in single-vehicle crashes in 

Florida 2017.  

Variable* 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -2.063 -7.86  

Random parameter (normally distributed)  
     

Constant [MI] 

(Standard deviation of parameter distribution) 

-3.979 

(3.425) 

-2.61 

(2.41) 

   

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Non-colliding object indicator (1 if first harmful event was identified as 

non-colliding object such as a rollover, etc., 0 otherwise) 

2.325 2.36    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Weekend indicator (1 if crash occurred in the weekend, 0 otherwise) 0.408 1.82    

Spatial characteristics  
     

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [MI] -1.708 -1.81 0.0092 -0.0107 0.0015 

Roadway characteristics 
     

Harmful event location indicator  

(1 if harmful event occurred inside the roadway, 0 otherwise) [SI] 

0.942 2.95 -0.0202 -0.0046 0.0248 

Curved segment indicator  

(1 if roadway curves to the right or left of travel direction, 0 otherwise) [NI] 

-0.887 -2.91 -0.0244 0.0094 0.0151 

Crash characteristics  
     

Collision with non-fixed object indicator  

(1 if collided with non-fixed object as the first harmful event, 0 otherwise) [SI] 

-1.683 -3.78 0.0128 0.0020 -0.0148 

Driver characteristics 
     

Middle aged driver indicator (1 if driver age between 30 to 49 years, 0 otherwise) [SI] 0.529 1.90 -0.0121 -0.0026 0.0146 

Exceeding speed limit by more than 10 mi/h indicator  

(1 if travel exceeded the speed limit by more than 10 mi/h, 0 otherwise) [NI] 

-1.053 -4.14 -0.0661 0.0272 0.0389 

Blood Alcohol Content indicator  

(1 if BAC is zero in the crash involved driver, 0 otherwise) [MI] 

1.988 2.01 -0.1183 0.1433 -0.0250 

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) [NI] 0.961 3.86 0.0641 -0.0354 -0.0287 

Number of observations 820 
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Number of estimated parameters 14 

Log-likelihood at zero -900.86 

Log-likelihood at convergence -682.56 

ρ2 = 1 – LL(β)/LL(0) 0.242 

*SI = Severe Injury; MI = Minor Injury; NI = No Injury   
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Table 5.6. Model results of mixed logit with heterogeneity in means and variance for non-aggressive driving in single-vehicle crashes 

in Florida 2015.  

Variable* 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -0.902 -9.10  

Random parameter (normally distributed)  
     

Constant [MI] 

(Standard deviation of parameter distribution) 

-0.112 

(1.828) 

-0.19 

(10.13) 

   

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Zero blood alcohol content (BAC) indicator  

(1 if BAC is zero in the crash involved driver, 0 otherwise) 

1.027 1.78    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Early morning indicator  

(1 if crash occurred between midnight to 6AM, 0 otherwise) 

0.285 5.25    

Spatial characteristics  
     

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) [SI] -0.385 -2.88 0.0010 0.0003 -0.0012 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [MI] -0.619 -6.59 0.0055 -0.0058 0.0003 

Roadway characteristics 
     

Harmful event location indicator  

(1 if harmful event occurred outside the roadway, 0 otherwise) [SI] 

0.522 6.09 -0.0089 0.0095 -0.0006 

Harmful event location indicator  

(1 if harmful event occurred inside the roadway, 0 otherwise) [NI] 

 0.726 10.85 0.0407 -0.0334 -0.0073 

Straight segment indicator (1 if roadway straight of travel direction, 0 otherwise) [MI] -0.873 -8.91 0.0590 -0.0624 0.0034 

Wide shoulder width indicator (1 if shoulder width is 8 to 12 ft, 0 otherwise) [NI] -0.788 -11.47 -0.0163 0.0129 0.0034 

Wet surface indicator (1 if road surface condition was wet, 0 otherwise) [NI] -0.361 -5.29 -0.0062 0.0050 0.0013 

Crash characteristics       

Collision with fixed object indicator  

(1 if collided with fixed object as the first harmful event, 0 otherwise) [SI] 

0.588 5.81 -0.0041 -0.0010 0.0051 

Driver characteristics 
     

Middle aged driver indicator (1 if driver age between 30 to 49 years, 0 otherwise) [NI] 0.218 3.94 0.0069 -0.0056 -0.0013 

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) [NI] 2.687 24.53 0.2052 -0.1751 -0.0301 

Vehicle characteristics 
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Passenger car involvement indicator  

(1 if passenger car being involved in the crash, 0 otherwise) [SI] 

-1.001 -9.23 0.0053 0.0011 -0.0063 

Sport Utility Vehicle (SUV) involvement indicator  

(1 if SUV being involved in the crash, 0 otherwise) [MI] 

0.301 3.66 -0.0034 0.0036 -0.0002 

Traffic characteristics 
     

Low traffic condition indicator (1 if AADT is below 4,000 veh/day, 0 otherwise) [SI] 0.213 2.09 -0.0011 -0.0003 0.0014 

Temporal characteristics 
     

Weekday indicator (1 if crash occurred during the weekdays, 0 otherwise) [MI] - 0.218 -3.40 0.0118 -0.0124 0.0007 

Number of observations 21,100 

Number of estimated parameters 20 

Log-likelihood at zero -23180.72 

Log-likelihood at convergence -10221.75 

ρ2 = 1 – LL(β)/LL(0) 0.559 

*SI = Severe Injury; MI = Minor Injury; NI = No Injury  
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Table 5.7. Model results of mixed logit with heterogeneity in means and variance for non-aggressive driving in single-vehicle crashes 

in Florida 2016. 

Variable* 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -0.756 -7.05  

Random parameter (normally distributed)  
     

Constant [MI] 

(Standard deviation of parameter distribution) 

-0.062 

(1.940) 

-0.11 

(10.36) 

   

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Zero blood alcohol content (BAC) indicator  

(1 if BAC is zero in the crash involved driver, 0 otherwise) 

0.974 1.70    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: early morning  

(1 if crash occurred between midnight to 6AM, 0 otherwise) 

0.217 4.27    

Spatial characteristics  
     

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) [SI] -0.354 -2.78 0.0010 0.0003 -0.0013 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [MI] -0.691 -6.90 0.0056 -0.0059 0.0003 

Roadway characteristics 
     

Harmful event location indicator  

(1 if harmful event occurred outside the roadway, 0 otherwise) [SI] 

0.559 6.38 -0.0098 0.0105 -0.0008 

Harmful event location indicator  

(1 if harmful event occurred inside the roadway, 0 otherwise) [NI] 

0.814 11.67 0.0456 -0.0374 -0.0082 

Straight segment indicator (1 if roadway straight of travel direction, 0 otherwise) [MI] -0.701 -6.99 0.0476 -0.0502 0.0026 

Narrow shoulder width indicator (1 if shoulder width is below 4 ft, 0 otherwise) [NI] 0.119 1.77 0.0024 -0.0019 -0.0005 

Wet surface indicator (1 if road surface condition was wet, 0 otherwise) [NI] -0.408 -5.64 -0.0060 0.0047 0.0013 

Crash characteristics  
     

Collision with fixed object indicator  

(1 if collided with fixed object as the first harmful event, 0 otherwise) [SI] 

0.773 7.72 -0.0060 -0.0014 0.0074 

Driver characteristics 
     

Younger aged driver indicator (1 if driver age below 30 years, 0 otherwise) [SI] -0.291 -2.89 0.0017 0.0004 -0.0021 

Middle aged driver indicator (1 if driver age between 30 to 49 years, 0 otherwise) [NI] 0.226 4.02 0.0072 -0.0057 -0.0015 

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) [NI] 2.685 24.32 0.2104 - 0.1773 - 0.0331 
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Vehicle characteristics 
     

Passenger car involvement indicator  

(1 if passenger car being involved in the crash, 0 otherwise) [SI] 

-0.593 -5.56 0.0040 0.0007 -0.0047 

Sport Utility Vehicle (SUV) involvement indicator  

(1 if SUV being involved in the crash, 0 otherwise) [MI] 

0.320 4.02 -0.0040 0.0042 -0.0002 

Traffic characteristics 
     

Low traffic condition indicator (1 if AADT is below 4,000 veh/day, 0 otherwise) [SI] 0.396 3.84   -0.0024 -0.0005 0.0030 

Temporal characteristics 
     

Weekday indicator (1 if crash occurred during the weekdays, 0 otherwise) [MI] -0.137 -2.09 0.0075 -0.0079 0.0004 

Number of observations 21,144 

Number of estimated parameters 21 

Log-likelihood at zero -23442.19 

Log-likelihood at convergence -10551.99 

ρ2 = 1 – LL(β)/LL(0) 0.549 

*SI = Severe Injury; MI = Minor Injury; NI = No Injury  
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Table 5.8. Model results of mixed logit with heterogeneity in means and variance for non-aggressive driving in single-vehicle crashes 

in Florida 2017.  

Variable* 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -1.017 -9.17  

Random parameter (normally distributed)  
     

Constant [MI] 

(Standard deviation of parameter distribution) 

-0.474 

(1.814) 

-0.85 

(9.93) 

   

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Zero blood alcohol content (BAC) indicator  

(1 if BAC is zero in the crash involved driver, 0 otherwise) 

1.361 2.48    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: early morning  

(1 if crash occurred between midnight to 6AM, 0 otherwise) 

0.241 4.61    

Spatial characteristics  
     

District 5 indicator (1 if crash occurred in District 5, 0 otherwise) [SI] 0.266 2.41 -0.0010 -0.0003 0.0013 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [MI] -0.730 -7.70   0.0064 -0.0067 0.0003 

Roadway characteristics 
     

Harmful event location indicator  

(1 if harmful event occurred outside the roadway, 0 otherwise) [SI] 

0.502 5.88 0.0446 -0.0368 -0.0078 

Harmful event location indicator  

(1 if harmful event occurred inside the roadway, 0 otherwise) [NI] 

0.790 11.80 -0.0091 0.0098 -.0007 

Straight segment indicator (1 if roadway straight of travel direction, 0 otherwise) [MI] -0.651 -6.82 0.0451 -0.0475 0.0024 

Narrow shoulder width indicator (1 if shoulder width is below 4 ft, 0 otherwise) [NI] 0.213 2.50 0.0023 -0.0015 -0.0007 

Wet surface indicator (1 if road surface condition was wet, 0 otherwise) [NI] -0.352 -4.98 -0.0052 0.0041 0.0011 

Crash characteristics  
     

Collision with fixed object indicator  

(1 if collided with fixed object as the first harmful event, 0 otherwise) [SI] 

0.779 7.91 -0.0060 -0.0014 0.0074 

Driver characteristics 
     

Younger aged driver indicator (1 if driver age below 30 years, 0 otherwise) [SI] -0.419 -4.06 0.0022 0.0006 -0.0027 

Middle aged driver indicator (1 if driver age between 30 to 49 years, 0 otherwise) [NI] 0.256 4.66 0.0083 -0.0066 -0.0017 

Restraint usage indicator (1 if shoulder and lap belt used, 0 otherwise) [NI] 2.574 24.03 0.2066 -0.1737 -0.0329 
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Vehicle characteristics 
     

Passenger car involvement indicator  

(1 if passenger car being involved in the crash, 0 otherwise) [SI] 

-0.745 -7.05 0.0044 0.0008 -0.0052 

Sport Utility Vehicle (SUV) involvement indicator  

(1 if SUV being involved in the crash, 0 otherwise) [MI] 

0.231 2.99 -0.0029 0.0031 -0.0001     

Traffic characteristics 
     

Low traffic condition indicator (1 if AADT is below 4,000 veh/day, 0 otherwise) [SI] 1.429 13.43   -0.0080 -0.0017 0.0097 

Temporal characteristics 
     

Weekday indicator (1 if crash occurred during the weekdays, 0 otherwise) [MI] -0.169 -2.68 0.0094 -0.0099 0.0005 

Number of observations 21,644 

Number of estimated parameters 21 

Log-likelihood at zero -23778.36 

Log-likelihood at convergence -10521.93 

ρ2 = 1 – LL(β)/LL(0) 0.557 

*SI = Severe Injury; MI = Minor Injury; NI = No Injury  
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content, with zero blood alcohol content increasing the minor-injury constant mean and thus 

likelihood of minor injury (and subsequently decreasing the likelihood of no injury and severe 

injury). In contrast to the aggressive driving results, in all three years the minor-injury constant 

variance was influenced by the same variable, an early-morning indicator (crash occurring between 

midnight and 6AM), with crashes in this early morning period having a higher minor-injury 

constant variance for non-aggressive drivers. 

All six models shown in Tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 show a wide variety of spatial, 

roadway, crash, driver, vehicle, traffic, and temporal characteristics influencing resulting driver 

injury severities. To compare the findings of all 6 models, Table 5.9 presents the marginal effects 

of all statistically significant variables for aggressive and non-aggressive driving crashes by year 

and injury levels. For the spatial variables, the Florida Department of Transportation District 2 

indicator (Jacksonville across the state to the gulf coast of Florida) shows that District 2 had a 

lower probability of severe injuries for non-aggressive drivers in 2015 and 2016 but not in 2017 

and not for aggressive drivers. The District 5 indicator (Orlando and surrounding area) shows that 

District 5 had a higher probability of severe injury for the non-aggressive driving model in 2017 

but was insignificant in all other models. The District 6 indicator (Miami area) was found to be 

significant in all years for non-aggressive drivers but only in 2017 for aggressive drivers. In all 

cases where this indicator variable was significant, the probability of a minor injury was lower and 

the probability of no injury or severe injury was higher. Finally, District 7 (Tampa Bay area) was 

only statistically significant for aggressive drivers in 2015 and 2016 (and insignificant in all other 

models). In both 2015 and 2016 aggressive drivers were more likely to be severely injured in 

District 7 relative to other districts. 
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Table 5.9. Comparison of marginal effects between aggressive and non-aggressive driving in single-vehicle crashes over the years 

(marginal effects for non-aggressive drivers in parentheses) 

Variables 
No Injury Minor Injury Severe Injury 

2015 2016 2017 2015 2016 2017 2015 2016 2017 

Spatial characteristics 
         

District 2 indicator  

(1 if crash occurred in District 2, 0 otherwise) 

– 

(0.0010) 

–  

(0.0010) 

– 

– 

–  

(0.0003) 

–  

(0.0003) 

– 

– 

–  

(-0.0012) 

–  

(-0.0013) 

– 

– 

District 5 indicator  

(1 if crash occurred in District 5, 0 otherwise) 

– 

– 

– 

– 

–  

(-0.0010) 

– 

– 

– 

– 

–  

(-0.0003) 

– 

– 

– 

– 

– 

(0.0013) 

District 6 indicator  

(1 if crash occurred in District 6, 0 otherwise) 

– 

(0.0055) 

– 

(0.0056) 

0.0092 

(0.0064) 

– 

(-0.0058) 

– 

(-0.0059) 

-0.0107 

(-0.0067) 

– 

(0.0003) 

– 

(0.0003) 

0.0015 

(0.0003) 

District 7 indicator  

(1 if crash occurred in District 7, 0 otherwise) 

-0.0117 

– 

0.0098 

– 

– 

– 

0.0046 

– 

-0.0124 

– 

– 

– 

0.0071 

– 

0.0025 

– 

– 

– 

Roadway characteristics 
         

Urban principal arterial indicator (1 if crash occurred 

on urban principal arterials, 0 otherwise) 

-0.0081 

– 

– 

– 

– 

– 

-0.0010 

– 

– 

– 

– 

– 

0.0092 

– 

– 

– 

– 

– 

Wet surface indicator  

(1 if road surface condition was wet, 0 otherwise) 

-0.0086 

(-0.0062) 

-0.0144 

(-0.0060) 

– 

(-0.0052) 

0.0033 

(0.0050) 

0.0172 

(0.0047) 

– 

(0.0041) 

0.0053 

(0.0013) 

-0.0028 

(0.0013) 

– 

(0.0011) 

Straight roadway section indicator  

(1 if straight section of the roadway, 0 otherwise) 

0.0306 

(0.0590) 

– 

(0.0476) 

– 

(0.0451) 

0.0043 

(-0.0624) 

– 

(-0.0502) 

– 

(-0.0475) 

-0.0349 

(0.0034) 

– 

(0.0026) 

– 

(0.0024) 

Curved segment indicator (1 if roadway curves to the 

right or left of travel direction, 0 otherwise) 

– 

– 

-0.0157 

– 

-0.0244 

– 

– 

– 

0.0058 

– 

0.0094 

– 

– 

– 

0.0099 

– 

0.0151 

– 

Narrow shoulder width indicator  

(1 if shoulder width is below 4 ft, 0 otherwise) 

– 

– 

–  

(0.0024) 

–  

(0.0023) 

– 

– 

–  

(-0.0019) 

–  

(-0.0015) 

– 

– 

–  

(-0.0005) 

–  

(-0.0007) 

Wide shoulder width indicator (1 if shoulder width is 

between 8 to 12 feet, 0 otherwise) 

–  

(-0.0163) 

– 

– 

– 

– 

–  

(0.0129) 

– 

– 

– 

– 

–  

(0.0034) 

– 

– 

– 

– 

Crash characteristics 
         

Collision with roadside fixed object indicator  

(1 if collided with roadside fixed object as the first 

harmful event, 0 otherwise) 

-0.0356 

(-0.0041) 

– 

(-0.0060) 

– 

(-0.0060) 

0.0426 

(-0.0010) 

– 

(-0.0014) 

– 

(-0.0014) 

-0.0070 

(0.0051) 

– 

(0.0074) 

– 

(0.0074) 

Collision with non-fixed object indicator  

(1 if collided with non-fixed object as the first 

harmful event, 0 otherwise) 

– 

– 

0.0122 

– 

0.0128 

– 

– 

– 

0.0016 

– 

0.0020 

– 

– 

– 

-0.0139 

– 

-0.0148 

– 
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On-road as harmful event location indicator  

(1 if harmful event occurred inside the roadway,  

0 otherwise) 

– 

(0.0407) 

-0.0133 

(0.0456) 

-0.0202 

(-0.0091) 

– 

(-0.0334) 

-0.0024 

(-0.0374) 

-0.0046 

(0.0098) 

– 

(-0.0073) 

0.0158 

(-0.0082) 

0.0248 

(-0.0007) 

Off-road as harmful event location indicator  

(1 if harmful event occurred outside the roadway,  

0 otherwise) 

– 

(-0.0089) 

– 

(-0.0097) 

– 

(0.0446) 

– 

(0.0095) 

– 

(0.0105) 

– 

(-0.0368) 

– 

(-0.0006) 

– 

(-0.0008) 

– 

(-0.0078) 

Driver characteristics 
         

Exceeding speed limit by more than 10 mi/h indicator 

(1 if travel exceeded the speed limit by more than 10 

mi/h, 0 otherwise) 

-0.0431 -0.0482 -0.0661 0.0521 0.0188 0.0272 -0.0090 0.0294 0.0389 

Suspected Alcohol use indicator (1 if alcohol use is 

suspected in the crash involved driver, 0 otherwise) 

-0.0289 

 

-0.0115 – -0.0045 

 

-0.0020 – 0.0334 0.0135 – 

Younger aged driver indicator  

(1 if driver age below 30, 0 otherwise) 

– 

– 

– 

(0.0017) 

– 

(0.0022) 

– 

– 

–  

(0.0004) 

–  

(0.0006) 

– 

– 

–  

(-0.0021) 

–  

(-0.0027) 

Middle aged driver indicator  

(1 if driver age between 30 to 49 years, 0 otherwise) 

– 

(0.0069) 

– 

(0.0072) 

-0.0121 

(0.0083) 

– 

(-0.0056) 

– 

(-0.0057) 

-0.0026 

(-0.0066) 

– 

(-0.0013) 

– 

(-0.0015) 

0.0146 

(-0.0017) 

Restraint usage indicator  

(1 if shoulder and lap belt used, 0 otherwise) 

0.0781 

(0.2052) 

0.0893 

(0.2104) 

0.0641 

(0.2066) 

-0.0411 

(-0.1751) 

-0.0518 

(-0.1773) 

-0.0354 

(-0.1737) 

-0.0370 

(-0.0301) 

-0.0376 

(-0.0311) 

-0.0287 

(-0.0329) 

Blood Alcohol Content indicator (1 if BAC is zero in 

the crash involved driver, 0 otherwise)  

– 

– 

– 

– 

-0.1183 

– 

– 

– 

– 

– 

0.1433 

– 

– 

– 

– 

– 

-0.0250 

– 

Vehicle characteristics 
         

Passenger car involvement indicator (1 if passenger 

car being involved in the crash, 0 otherwise) 

– 

(0.0053) 

– 

(0.0040) 

– 

(0.0044) 

– 

(0.0011) 

– 

(0.0007) 

– 

(0.0008) 

– 

(-0.0063) 

– 

(-0.0047) 

– 

(-0.0052) 

Sport Utility Vehicle (SUV) involvement indicator  

(1 if SUV being involved in the crash, 0 otherwise) 

– 

(-0.0034) 

– 

(-0.0040) 

– 

(-0.0029) 

– 

(0.0036) 

– 

(0.0042) 

– 

(0.0031) 

– 

(-0.0002) 

– 

(-0.0002) 

– 

(-0.0001) 

Traffic characteristics 
         

Low traffic condition indicator  

(1 if AADT is below 4,000 veh/day, 0 otherwise) 

– 

(-0.0011) 

– 

(-0.0024) 

– 

(-0.0080) 

– 

(-0.0003) 

– 

(-0.0005) 

– 

(-0.0017) 

– 

(0.0014) 

– 

(0.0030) 

– 

(0.0097) 

Temporal characteristics 
         

Weekday indicator (1 if crash occurred during the 

weekdays, 0 otherwise) 

– 

(0.0118) 

– 

(0.0075) 

– 

(0.0094) 

– 

(-0.0124) 

– 

(-0.0079) 

– 

(-0.0099) 

– 

(0.0007) 

– 

(0.0004) 

– 

(0.0005) 
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For all explanatory variables, the temporal stability of the marginal effects shown in Table 

5.9 are of particular interest. While previous likelihood ratio tests indicate that both aggressive and 

non-aggressive driver crashes are temporally unstable, it is noteworthy that for non-aggressive 

driving crashes 12 variables were found to be statistically significant across all time periods. These 

include the District 6 indicator (1 if crash occurred in District 6, 0 otherwise), wet surface indicator 

(1 if road surface condition was wet, 0 otherwise), straight roadway section indicator (1 if straight 

section of the roadway, 0 otherwise), collision with roadside fixed object indicator (1 if collided 

with roadside fixed object as the first harmful event, 0 otherwise), on-road as harmful event 

location indicator (1 if harmful event occurred inside the roadway, 0 otherwise), off-road as 

harmful event location indicator (1 if harmful event occurred outside the roadway, 0 otherwise), 

middle aged driver indicator (1 if driver age between 30 to 49 years, 0 otherwise), restraint usage 

indicator (1 if shoulder and lap belt used, 0 otherwise), passenger car involvement indicator (1 if 

passenger car being involved in the crash, 0 otherwise), sport utility vehicle (SUV) involvement 

indicator (1 if SUV being involved in the crash, 0 otherwise), low traffic condition indicator (1 if 

AADT is below 4,000 veh/day, 0 otherwise), and the weekday indicator (1 if crash occurred during 

the weekdays, 0 otherwise). While the marginal effects of these variables tend to vary from year 

to year, some of the variations are quite modest, suggesting temporal stability of some effects. For 

example, the restrain usage indicator shows remarkably stable marginal effects over time, with the 

use of shoulder and lap restraints increasing the probability of no injury by around 0.21 relative to 

those not using shoulder and lap restraints (see Table 5.9).  

In contrast, for crashes involving aggressive driving, just two variables were found to be 

statistically significant across all three time periods; exceeding speed limit by more than 10 mi/h 

indicator (1 if travel exceeded the speed limit by more than 10 mi/h, 0 otherwise), and again 
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restraint usage. While exceeding the speed limit by more than 10 mi/h is statistically significant 

across all time periods, Table 5.9 shows considerable variation in marginal effects from on year to 

the next with, for example, the effect on severe-injury probabilities ranging from -0.0090 in 2015 

to a positive 0.0389 in 2017. The marginal effect for restraint usage is more consistent over time, 

but much less consistent than it was for non-aggressive drivers (see Table 5.9). Interestingly, the 

effectiveness of safety belt usage in increasing the probability of no injury in aggressive driving 

crashes is less than half that in non-aggressive driving crashes. Some caution should be used in 

interpreting these results because safety belt use among aggressive drivers is much lower (mid-

50% range) than for non-aggressive drivers (90% range), as shown in Table 5.2. For aggressive 

drivers, the parameter estimates may be capturing both the effectiveness of safety belts and the 

self-selectivity of risker drivers choosing to wear safety belts (see Eluru and Bhat (2007), Bhat et 

al. (2014) and Mannering et al. (2020) for a discussion of this point). 

 

5.6 Discussion of Temporal Findings and Directions for Future Work 

The findings of temporally consistent marginal effects for many explanatory variables in 

crashes involving non-aggressive drivers, and temporally inconsistent marginal effects in crashes 

involving aggressive drivers has important implications. It suggests that the temporal instability 

found in many studies may be the result of a subset of observations, and that temporal stability 

may exist in some if not most of the observations. Identification of temporally stable and 

temporally unstable observations could be made with a latent class structure where one class 

identifies crashes where parameter estimates vary over time and a second class identifies crashes 

where parameter estimates are fixed over time. Class-splitting functions could give critical insights 

into the factors that make some crashes temporally stable and others not (Fountas et al., 2018). 
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However, the structure of the model would not be trivial because allowing for temporally shifting 

parameters in one of the classes would be complicated, particularly if random parameters are 

considered (see Xiong and Mannering (2013) for a discussion of the estimation complexities in 

such a model). Still, the potential of such a model to unravel the complexities of temporal 

instability in safety data would be worth the effort if a computationally feasible estimation 

approach could be developed. 

 

5.7 Summary and Conclusions 

Using single-vehicle crash data related to aggressive and non-aggressive driving in Florida 

from 2015 to 2017, this study used a random parameters logit model (with heterogeneity in mean 

and variance) to explore the temporal stability of factors determining driver-injury severities over 

time. Three driver-injury levels were considered: no injury, minor injury (possible injury and non-

incapacitating injury), and severe injury incapacitating injury and fatal injury). The estimated 

models showed a wide variety of factors significantly influencing driver-injury outcomes including 

vehicle type, crash type, roadway attributes, spatial and temporal characteristics, overall traffic 

volume, and driver factors.  

Statistically significant differences were found between crashes involving aggressive and 

non-aggressive drivers, and both non-aggressive and aggressive crash injury-severity models 

exhibited statistically significant temporal instability over the three years considered. This is an 

important finding, and model estimation results that split aggressive and non-aggressive driving 

crashes could potentially be used to help guide injury-severity mitigation policies.  

While both aggressive and non-aggressive driver models exhibit statistically significant 

temporal instability overall, the marginal effects of many of the explanatory variables in crashes 
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involving non-aggressive drivers were relatively stable over time, whereas crashes involving non-

aggressive drivers showed that only the restraint usage indicator had marginal effects that were 

relatively stable over time (see Table 5.9). Past research has tended to argue that this temporal 

instability is largely the result of global, fundamental changes in driving behavior and other 

associated factors (Mannering, 2018), but the findings in this chapter suggest that such changes 

may be largely driven not globally, but by a subset of the observation crash population. Future 

work that could identify temporally stable and unstable subsets of the crash population would 

provide a potentially valuable contribution in terms of guiding safety policies. 

As with all studies, this study is not without its limitations. Although police officers are 

trained for consistency in interpretation, defining aggressive driving as having a vehicle operated 

in an erratic/reckless and aggressive manner is still open to the interpretation of the officer, and a 

potential source of error. There are other definitions of aggressive driving that may be worth 

exploring and these could potentially produce different results. These elements should also be 

given consideration in future work. 

  



117 

  

Chapter 6 

 

Unobserved Heterogeneity and Temporal Instability in the 

Analysis of Work-Zone Crash-Injury Severities 
 

Mouyid Islam, Nawaf Alnawmasi, Fred Mannering 

6.1. Introduction 

Work-zone safety has been increasingly recognized as a very serious problem. In the U.S., 

the number of fatal crashes in work-zones has increased substantially in recent years from 557 in 

2012 to 710 in 2017 (a 27.5% increase). Single-vehicle crashes in work zones comprise about 20% 

of all crashes and are of particular interest because they reflect how the fundamentals of work zone 

design (transition areas, pavement markings, signage, etc.) impact potential driver errors that result 

in a crash. In Florida, the number of single-vehicle crashes occurring in work-zones (all injury 

severity levels) increased from 1,154 in 2012 to 1,500 in 2017 (a 23% increase). The numbers 

become more striking when considering the per-work-zone crash rate. As shown in Figure 6.1, 

although there are variations from year to year, there is a noticeable upward trend and, from 2012 

to 2017, the number of single-vehicle crashes per work zone in Florida increased 50.7%. The 

distribution of driver-injury severities in these crashes has also varied from year to year, although 

there do not appear to be strong trends as illustrated in Figure 6.2. With the likely emphasis on 

renewing U.S. highway infrastructure in the coming years, understanding factors that influence the 

likelihood and severity of work-zone crashes is extremely important. 

Work zone safety in general, and specifically injury severities in work zone crashes, has 

been the emphasis of a number of research studies over the years (Li and Bai, 2008, 2009; Harb et 

al., 2010; Meng et al., 2010; Tarko et al., 2011; Osman et al., 2018). While all of these studies 
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Figure 6.1. Average number of single-vehicle crashes per work-zone by year in Florida, 2012-17 

(dashed line is the data trend line). 

 

 

 
 

Figure 6.2. Proportion of single-vehicle work-zone crashes by severity by year in Florida, 2012-

17. 
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have provided insights into the factors that determine work zone-injury severity, the issue of 

temporal stability in statistical models of work zone-injury severity (whether the influence of 

factors determining severity is stable over time) has not really been addressed to date. Mannering 

(2018) provides a detailed discussion of the potential causes of temporal instability in crash-data 

analyses and an abundance of recent work suggests that the influence of factors that determine 

injury severities, in general, may not be stable over time (Malyshkina and Mannering, 2009; 

Venkataraman et al, 2013; Behnood and Mannering, 2015; Behnood and Mannering, 2016; 

Alnawmasi and Mannering, 2019; Islam and Mannering, 2020). With such past empirical work 

finding evidence of temporal instability in the influence of factors affecting injury severity, 

temporal instability can also be expected to be a concern in work zone crashes. Identifying such 

instability and providing insight into how the influence of factors determining injury severities in 

work-zone crashes changes over time, could potentially be of long-term value in improving work 

zone safety. However, the assessment of temporal instability in work-zone crash severities is 

fundamentally different from the assessment of temporal instability in most past studies. This is 

because most past studies assess possible instability over a highway network (city or state) that is 

essentially unchanged from year to year. Thus, the unobserved highway-related factors that 

influence injury-severity outcomes are relatively stable over time. In the case of work zones, each 

work zone is unique with a unique set of unobservables and, from year to year, the mix of highway 

work zones changes as projects are started and completed. This means that any observed temporal 

instability in the factors influencing injury severities is likely to be a function of traditional sources 

as well as temporal variation in the mix of highways having active work zones. The combination 

of these two effects would make temporal instability much more likely than it would be on highway 

entities (highway segments) that have temporally constant attributes. 
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Using multi-year crash data, the intent of the current chapter is to estimate models of injury 

severity in work zone single-vehicle crashes and determine whether the influence of explanatory 

variables changes over time. The chapter begins with a description of the available work-zone 

data, followed by the presentation of the methodological approach. Statistical tests for temporal 

instability are then conducted and final model estimations are presented and discussed. Finally, the 

chapter concludes with a summary of findings and their implications. 

 

6.2 Data Description 

Data available for this study were the work-zone related crashes available in Florida’s 

Crash Analysis Reporting data system (these are all police-reported crashes). For the purposes of 

this study, crash data were gathered over the six-year period from January 1, 2012, to December 

31, 2017. Work-zone related crash data were filtered from the Florida’s Crash Analysis Reporting 

data system and linked with a vehicle dataset based on the crash identification number. The 

resulting combined dataset provided detailed information about the crash, including roadway 

characteristics and conditions (including work zone characteristics), as well as vehicle and person 

characteristics. The linked dataset was filtered for single-vehicle work zone crashes, which 

resulted in 8,430 observations.  

Information available in the data includes the resulting injury severity of the driver (no 

injury, possible injury, non-incapacitating injury, incapacitating injury and fatality), type of 

vehicle, driver actions (evasive maneuvers etc.), driver information (age, gender, usage of safety 

equipment, influence of alcohol, drug use), information relating to the time and location of the 

crash, roadway class, road surface condition, weather and light conditions, type of work zones, 
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lane and shoulder widths, median width, location of harmful events, traffic volume, percent of 

trucks, presence of enforcement and workers in the work zones, and so on.  

 

6.3 Methodology  

Over the years, crash-related injury severities have been studied by a variety of ordered 

and unordered discrete outcome approaches including ordered logit/probit models, multinomial 

logit models, dual-state multinomial logit models, nested logit models, latent-class logit models, 

mixed (random parameters) logit models, Markov-switching models, and others (Savolainen et al., 

2011; Islam and Hernandez, 2013; Mannering and Bhat, 2014; Mannering et al., 2016). To account 

for possible unobserved heterogeneity in the data, more recent research has focused on random 

parameter approaches (Milton et al., 2008; Eluru et al., 2008; Morgan and Mannering, 2011; 

Anastasopoulos and Mannering, 2011; Kim et al., 2013; Venkataraman et al., 2013; Behnood and 

Mannering, 2015), latent class models (Behnood et al., 2014; Cerwick et al., 2014; Shaheed and 

Gkritza, 2014; Yasmin et al., 2014) or combination of both (Xiong and Mannering, 2013) and 

heterogenity in means and variance (Venkataraman et. al, 2014; Behnood and Mannering 2017a, 

2017b; Seraneeprakarn et al., 2017) to model the injury severities.  

To study injury severity probabilities in the current chapter, a random parameters logit 

model that accounts for possible heterogeneity in the means and variances of the random 

parameters is used to address possible unobserved heterogeneity. The injury severity of drivers in 

single-vehicle work zone crashes are considered with possible injury outcomes of no injury, minor 

injury (possible injury and non-incapacitating injury) and severe injury (incapacitating injury and 

fatality). The modeling approach starts by defining a function that determines injury-severity 

(following the notation of Islam and Mannering, 2020), 
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kn k kn knS = + β X      (6.1) 

where Skn is an injury-severity function determining the probability of driver-injury severity 

outcome k in work zone crash n, Xkn is a vector of explanatory variables that affect work zone 

driver-injury severity level k, βk is a vector of estimable parameters, and εkn is an error term. 

Assuming the error term is assumed is generalized extreme value distributed, the standard 

multinomial logit model results as (McFadden, 1981),  

( )
 

( )
k kn

n

k kn

K

EXP
P k    

EXP


=


β X

β X
     (6.2) 

where Pn(k) is the probability that work-zone crash n that will result in driver-injury severity 

outcome k with K being the set of the three possible injury-severity outcomes. If one or more 

parameter estimates in the vector βk are allowed to vary across crash observations, Equation 6.2 

can be rewritten as (Train, 2009; Washington et al., 2020),  

( )
( )

( )
( )k kn

n k k k

k kn

K

EXP
P k f | d

EXP


=  

β X
β φ β

β X
    (6.3) 

where f(βk|φk) is the density function of βk and φk is a vector of parameters describing the density 

function (mean and variance), and all other terms are as previously defined.  

The possibility of unobserved heterogeneity in the means and variances of parameters is 

also considered by letting βkn be a vector of estimable parameters that varies across crashes defined 

as (Mannering et al., 2016; Seraneeprakarn et al., 2017; Behnood and Mannering, 2017; Waseem 

et al., 2019; Alnawmasi and Mannering, 2019; Behnood and Mannering, 2019; Islam and 

Mannering, 2020; Washington et al., 2020): 

( )kn k kn kn kn kn kn kn 
 +  EXP   =   +   β Z W     (6.4) 
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where βk is the mean parameter estimate across all crashes, Zkn is a vector of crash-specific 

explanatory variables capturing heterogeneity in the mean that affects work zone injury-severity 

level k, Θkn is the corresponding vector of estimable parameters, Wkn is the vector of crash-specific 

explanatory variables capturing heterogeneity in the standard deviation (σkn) with corresponding 

parameter vector Ψkn, and vkn is a disturbance term. 

The choice of density functions for the term f(βk|φk) in Equation 6.3 can be determined by 

numerical evaluation (Mannering et al., 2016) and in this chapter none of the various density 

function considered were found to be statistically superior to the normal distribution. This finding 

is consistent with other empirical studies such as Milton et al., 2008; Alnawmasi and Mannering, 

2019; Islam and Mannering, 2020, among many others. Model estimations were conducted using 

a simulated maximum likelihood approach with 1,000 Halton draws (McFadden and Train, 2000; 

Bhat, 2001; Train, 2009). Marginal effects were computed to determine the effect of explanatory 

variables on injury-severity probabilities, with the marginal effect providing the effect that a one-

unit increase in an explanatory variable has on the injury-outcome probabilities (for indicator 

variables this is the change in probability resulting from the indicator going from zero to one). The 

forthcoming marginal effect tables report the marginal effect averaged over all crash observations. 

 

6.4 Tests for Temporal Stability 

After extensively testing for temporal instability across years, it was determined that 

statistically significant differences existed in each year of the injury-severity data from 2012 to 

2017. This was confirmed by a series of likelihood-ratio tests. The first test was based on a model 

estimated overall years of available data (2012-17) and each converged model representing each 

year. Using the converged models, the likelihood ratio test for this case is  
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( ) ( ) ( ) ( )

( ) ( ) ( )

2012 17 2012 2013 20142

2015 2016 2017

2
LL LL LL LL

X
LL LL LL

− − − − 
= −  

− − −  

β β β β

β β β
    (5)  

 

where, LL(β2012-17) is the log-likelihood at the convergence of the model that used all of the 

available data (2012-17), LL(β2012), LL(β2013), LL(β2014), LL(β2015), LL(β2016), and LL(β2017) is the 

log-likelihood at convergence of a model based on 2012, 2013, 2014, 2015, 2016, and 2017-data, 

respectively. Model estimates gave an X2 of 848.31 which is χ2 distributed with 103 degrees of 

freedom (the number of parameters found to be statistically significant in the model using all of 

the data year, 2012-17 excluding the numbers of parameters found statistically significant in each 

year). This χ2 value gives 99.99% confidence that the null hypothesis that the parameters are equal 

parameters in all the years can be rejected.  

To test for temporal instability further, additional likelihood ratio tests were run as 

(Washington et al., 2020), 

2 1 1

2 2 ( ) ( )t t tX LL LL = − − β β      (6) 

where 
2 1

( )t tLL β is the log-likelihood at convergence of a model containing converged parameters 

based on using time-period t2’s data, while using data from time-period t1, and 
1

( )tLL β is the log-

likelihood at convergence of the model using time-period t1’s data, with parameters no longer 

restricted to using time-period t2’s converged parameters as is the case for 
2 1

( )t tLL β . This test 

was also reversed such that time-period t1 above becomes time period t2 and time period t2 above 

becomes subset t1 (thus giving two test results for each model comparison). The resulting value X2 

is χ2 distributed and can be used to determine if the null hypothesis that the parameters are equal 

in the two periods can be rejected. Using the converged parameters of the 2013 model (Table 6.1) 

as starting values and applying them to the 2012 data gave X2 = 76.61 (from Equation 6). With 20 
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degrees of freedom, this gave a χ2 confidence level of more than 99.9% that the null hypothesis 

that the two time periods are the same can be rejected. Using the converged parameters of the 2012 

model (Table 6.1) as starting values and applying them to the 2013 data gave X2 = 68.45 and, with 

19 degrees of freedom, this also gave a χ2 confidence level of more than 99.9% that the null 

hypothesis that the two time periods are the same can be rejected. Similarly, other two-year periods 

of interest were tested for temporal stability (see Table 6.1) and all tests indicated that the null 

hypothesis that the parameters are equal between years could be rejected.  

 

 

Table 6.1. Likelihood ratio test results between different time periods based on random parameters 

approaches with heterogeneity in means and variances in Florida work zone crashes 

involving single vehicles (χ2 values with degrees of freedom in parenthesis and 

confidence level in brackets). 

t1  

(Eq. 6.6) 

t2 (Eq. 6.6) 

2012 2013 2014 2015 2016 2017 

2012 – 76.61 (20) 

[>99.99%] 

79.04 (18) 

[>99.99%] 

60.46 (21) 

[> 99.99%] 

120.08 (20) 

[> 99.99%] 

112.83 (27) 

[> 99.99%] 

2013 68.45 (19) 

[> 99.99%] 
– 80.26 (18) 

[>99.99%] 

52.76 (21) 

[> 99.99%] 

82.14 (20) 

[> 99.99%] 

145.51 (27) 

[> 99.99%] 

2014 110.81 (19) 

[> 99.99%] 

52.41 (20) 

[>99.99%] 
– 36.43 (21) 

[> 98.00%] 

62.44 (20) 

[> 99.99%] 

106.34 (27) 

[> 99.99%] 

2015 84.58 (19) 

[> 99.99%] 

63.23 (20) 

[>99.99%] 

69.24 (18) 

[>99.99%] 
– 97.00 (20) 

[> 99.99%] 

95.01 (27) 

[> 99.99%] 

2016 138.63 (19) 

[> 99.99%] 

167.56 (20) 

[>99.99%] 

252.64 (18) 

[>99.99%] 

122.25 (21) 

[> 99.99%] 
– 189.01 (27) 

[> 99.99%] 

2017 100.82 (19) 

[> 99.99%] 

121.39 (20) 

[>99.99%] 

134.30 (18) 

[>99.99%] 

66.77 (21) 

[> 99.99%] 

52.36 (20) 

[> 99.99%] 
– 
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6.5 Model Estimation Results 

Table 6.2 presents the summary statistics for variables found to be statistically significant 

in the model estimations (this table provides values for each of year of the 2012-17 analysis 

period). Tables 6.3 to 6.8 present the model estimation results for work-zone crashes from 2012 to 

2017 and Tables 6.9, 6.10 and 6.11 present the temporal comparison of marginal effects for no 

injury, minor, and severe injury over the analysis period, respectively. The models have reasonably 

good overall statistical fit with ρ2 values of 0.329, 0.350, 0.355, 0.343, 0.319, and 0.403 for 2012, 

2013, 2014, 2015, 2016, and 2017, respectively. 

As shown in Tables 6.3 through 6.8, different parameters were found to be random 

(normally distributed) with statistically significant heterogeneity in means and variance in each of 

the six estimated models. For the 2012, 2014, and 2015 models, the constant term specific to minor 

injury was found to be a random parameter. For the 2013 model, the shoulder-median-work 

indicator was found to have a statistically significant random parameter in the severe injury 

function. For the 2016 model, the young driver indicator was found to have a statistically 

significant random parameter in the minor injury function, and for 2017 model, the young driver 

indicator (in minor injury) and shoulder-median-work indicator (severe injury) were found to have 

statistically significant random parameters. For the 2012 model (Table 6.3), the mean of the 

constant-term parameter increased if the harmful event location (the harmful event is the object 

struck that caused injury or property damage) occurred on the right shoulder and the variance of 

the parameter increased if the crash occurred in clear weather. For the 2013 (Table 6.4), the mean 

of the shoulder-median-work indicator specific to severe injury increased if an older driver was 

involved and the variance of the parameter increased if driver negligence was involved. For 2014 
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Table 6.2. Summary statistics for variables found to be statistically significant in model estimations.  
Variables 2012 2013 2014 2015 2016 2017 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Environmental characteristics 

Rain indicator 

(1 if crash occurred at the time 

of raining, 0 otherwise) 

0.184 0.388 0.229 0.420 0.234 0.424 0.199 0.399 0.184 0.388 0.176 0.381 

Clear weather indicator 

(1 if crash occurred at the time 

of clear weather, 0 otherwise) 

0.631 0.482 0.577 0.493 0.558 0.496 0.606 0.488 0.606 0.488 0.654 0.475 

Dark indicator 

(1 if crash occurred at the time 

of darkness, 0 otherwise)  

0.136 0.343 0.160 0.367 0.165 0.371 0.166 0.372 0.164 0.370 0.154 0.361 

Traffic characteristics 

Low traffic volume indicator  

(1 if average annual daily 

traffic is below 40,000 

vehicles/day, 0 otherwise) 

0.294 0.455 0.362 0.480 0.373 0.483 0.338 0.473 0.069 0.254 0.126 0.332 

Average percent of large 

trucks (1 if large truck volume 

between 7.5% and 12.5% of all 

traffic, 0 otherwise) 

0.545 0.497 0.553 0.497 0.471 0.499 0.456 0.498 0.188 0.391 0.252 0.434 

Temporal characteristics 

Late night indicator  

(1 if time of day is between 8 

pm to 11:59 pm, 0 otherwise) 

0.136 0.342 0.171 0.377 0.140 0.347 0.148 0.355 0.160 0.367 0.153 0.360 

Afternoon indicator  

(1 if time of day is between 12 

to 2:59 PM, 0 otherwise) 

0.143 0.350 0.161 0.368 0.156 0.363 0.156 0.363 0.164 0.370 0.152 0.359 

Earlier months indicator  

(1 if crash occurred January to 

April, 0 otherwise) 

0.274 0.446 0.292 0.454 0.376 0.484 0.279 0.448 0.342 0.474 0.349 0.476 
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Variables 2012 2013 2014 2015 2016 2017 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Later months indicator  

(1 if crash occurred October to 

December, 0 otherwise) 

0.249 0.432 0.221 0.415 0.194 0.395 0.265 0.441 0.205 0.403 0.22 0.414 

Spatial characteristics 

District 1 indicator 

(1 if crash occurred in District 

1, 0 otherwise) 

0.123 0.329 0.082 0. 275 0.094 0.292 0.124 0.329 0.188 0.391 0.107 0.309 

District 2 indicator 

(1 if crash occurred in District 

2, 0 otherwise) 

0.117 0.322 0.097 0.297 0.098 0.297 0.107 0.309 0.142 0.349 0.174 0.379 

District 3 indicator 

(1 if crash occurred in District 

3, 0 otherwise) 

0.045 0.207 0.040 0.196 0.047 0.213 0.055 0.228 0.069 0.254 0.066 0.248 

District 4 indicator  

(1 if crash occurred in District 

4, 0 otherwise) 

0.272 0.445 0.299 0.458 0.204 0.403 0.158 0.365 0.162 0.368 0.196 0.397 

District 5 indicator  

(1 if crash occurred in District 

5, 0 otherwise) 

0.121 0.326 0.159 0.365 0.222 0.415 0.207 0.405 0.221 0.415 0.236 0.424 

District 6 indicator  

(1 if crash occurred in District 

6, 0 otherwise) 

0.149 0.357 0.143 0.351 0.153 0.360 0.158 0.365 0.113 0.317 0.120 0.324 

District 7 indicator 

(1 if crash occurred in District 

7, 0 otherwise) 

0.168 0.374 0.177 0.381 0.180 0.384 0.188 0.391 0.102 0.303 0.100 0.300 

Vehicle characteristics 

Motorcycle indicator  

(1 if motorcycle, 0 otherwise) 

0.052 0.222 0.063 0.244 0.042 0.201 0.043 0.203 0.044 0.205 0.034 0.182 

Pickup truck indicator  

(1 if pickup, 0 otherwise) 

0.110 0.314 0.099 0.299 0.107 0.309 0.103 0.304 0.105 0.306 0.123 0.328 



129 

  

Variables 2012 2013 2014 2015 2016 2017 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Passenger car indicator (1 if 

passenger car, 0 otherwise) 

0.556 0.496 0.55 0.497 0.553 0.497 0.567 0.495 0.534 0.498 0.541 0.498 

Work zone characteristics 

Lane-closure work zone 

indicator (1 if lane closure, 0 

otherwise) 

0.155 0.362 0.168 0.374 0.153 0.360 0.154 0.361 0.154 0.361 0.184 0.388 

Lane shift indicator  

(1 if lane shift work, 0 

otherwise) 

0.097 0.297 0.106 0.309 0.092 0.290 0.093 0.290 0.087 0.281 0.090 0.287 

Shoulder-median work 

indicator (1 if work on 

shoulder and median, 0 

otherwise) 

0.551 0.497 0.515 0.499 0.577 0.493 0.591 0.491 0.603 0.489 0.564 0.495 

Absence of enforcement 

indicator (1 if no enforcement 

was present, 0 otherwise)  

0.899 0.300 0.902 0.296 0.912 0.282 0.914 0.280 0.917 0.274 0.924 0.263 

Presence of workers indicator 

(1 if workers were present, 0 

otherwise)  

0.319 0.466 0.326 0.468 0.616 0.486 0.382 0.486 0.368 0.482 0.352 0.477 

Non-work zone indicator  

(1 if crashes were identified 

not related to work zone 

geometry, 0 otherwise) 

0.560 0.496 0.597 0.490 0.648 0.477 0.637 0.480 0.622 0.484 0.639 0.480 

Work zone geometry indicator 

(1 if crashes were identified as 

work zone geometry related, 0 

otherwise) 

0.321 0.467 0.272 0.445 0.226 0.418 0.237 0.425 0.233 0.423 0.238 0.426 

Transition area indicator  

(1 if the crash occurred in the 

work zone’s transition area, 0 

otherwise) 

0.140 0.347 0.151 0.358 0.142 0.349 0.155 0.362 0.146 0.354 0.151 0.358 



130 

  

Variables 2012 2013 2014 2015 2016 2017 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Harmful event characteristics 

Most harmful shoulder 

indicator (1 if most harmful 

event occurs in the shoulder, 0 

otherwise) 

0.336 0.472 0.331 0.470 0.361 0.480 0.354 0.478 0.132 0.339 0.214 0.410 

Most harmful median indicator 

(1 if most harmful event occurs 

in the median, 0 otherwise) 

0.207 0.405 0.246 0.431 0.256 0.436 0.25 0.433 0.092 0.290 0.102 0.302 

Harmful event on-road 

indicator (1 if harmful event 

occurred on road, 0 otherwise)  

0.506 0.500 0.518 0.499 0.460 0.498 0.491 0.499 0.492 0.499 0.515 0.499 

Harmful event off-road 

indicator  

(1 if the harmful event was off 

road, 0 otherwise) 

0.129 0.336 0.152 0.359 0.174 0.379 0.183 0.387 0.183 0.387 0.202 0.402 

Harmful fixed object indicator  

(1 if harmful event occurred 

with roadside fixed object, 0 

otherwise) 

0.551 0.497 0.560 0.496 0.541 0.498 0.509 0.499 0.511 0.499 0.526 0.499     

Harmful right shoulder 

indicator  

(1 if harmful event occurs on 

the right shoulder, 0 otherwise) 

0.216 0.412 0.224 0.417 0.236 0.425 0.206 0.404 0.220 0.414 0.184 0.388 

Harmful median indicator  

(1 if harmful event occurs in 

the median, 0 otherwise) 

0.095 0.293 0.068 0.253 0.095 0.293 0.091 0.287 0.075 0.264 0.066 0.249 

Harmful overturn indicator  

(1 if harmful event occurs with 

overturning, 0 otherwise) 

0.069 0.254 0.074 0.262 0.090 0.287 0.081 0.273 0.086 0.281 0.059 0.236 
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Road geometric characteristics 

Large shoulder width indicator 

(1 if right shoulder width 

between 6 to 10 ft., 0 

otherwise) 

0.441 0.496 0.402 0.490 0.404 0.490 0.372 0.483 0.144 0.351 0.236 0.425 

Urban interstate indicator  

(1 if crash occurred on urban 

interstate, 0 otherwise) 

0.299 0.458 0.274 0.446 0.268 0.443 0.269 0.443 0.100 0.300 0.166 0.372 

Rural interstate indicator  

(1 if crash occurred on rural 

interstate, 0 otherwise) 

0.069 0.254 0.094 0.292 0.138 0.345 0.153 0.360 0.019 0.139 0.045 0.208 

Urban toll way indicator  

(1 if crash occurred on an 

urban toll way, 0 otherwise) 

0.069 0.254 0.094 0.292 0.138 0.345 0.153 0.360 0.019 0.139 0.048 0.215 

Driver characteristics 

Young driver indicator  

(1 if driver’s age below 30 

years, 0 otherwise) 

0.383 0.486 0.389 0.487 0.407 0.491 0.395 0.489 0.380 0.485 0.404 0.490 

Old driver indicator  

(1 if driver’s age between 50 to 

65 years, 0 otherwise) 

0.189 0.392 0.184 0.388 0.167 0.373 0.187 0.390 0.181 0.385 0.194 0.395 

Older driver indicator  

(1 if driver’s age is 65 years 

and above, 0 otherwise) 

0.076 0.265 0.072 0.260 0.078 0.268 0.077 0.267 0.084 0.278 0.082 0.275 

Negligent driver indicator  

(1 if negligent driving, 0 

otherwise) 

0.333 0.471 0.317 0.465 0.297 0.457 0.333 0.471 0.337 0.472 0.366 0.481 

Over steering indicator  

(1 if driver actions involved 

over steering, 0 otherwise) 

0.018 0.133 0.023 0.151 0.019 0.136 0.019 0.136 0.022 0.149 0.021 0.144 
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Table 6.3. Mixed logit model with heterogeneity in mean and variance for single-vehicle work-zone crashes in Florida, 2012.  

Variables 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -3.817 -11.42  

Random parameter (normally distributed)       

Constant [MI] -6.065 -2.59    

(Standard deviation of parameter distribution) (4.561) (2.04)    

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Harmful right shoulder indicator  

(1 if harmful event occurs on the right shoulder, 0 otherwise) 

1.663 1.76    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Clear weather indicator (1 if clear weather, 0 otherwise) 0.260 1.76    

Environmental characteristics 
     

Rain indicator (1 if it is rainy, 0 otherwise) [SI] -0.667 -1.61 0.0040 0.0004 -0.0044 

Traffic characteristics 
     

Low traffic volume indicator (1 if average annual daily traffic is below 40,000 

vehicles/day, 0 otherwise) [SI] 

   0.765 2.68 -0.0150 -0.0019 0.0169 

Average percent of large trucks (1 if large truck volume between 7.5% and 12.5% of all 

traffic, 0 otherwise) [MI]  

   1.325 1.97 -0.0384 0.0429 -0.0046 

Temporal characteristics 
     

Late night indicator (1 if time of day is between 8 pm to 11:59 pm, 0 otherwise) [SI]    0.841 2.43 -0.0073 -0.0009 0.0083 

Earlier months indicator (1 if crash occurred January to April, 0 otherwise) [MI]    1.101 1.72 -0.0161 0.0181 -0.0020 

Spatial characteristics  
     

District 5 indicator (1 if crash occurred in District 5, 0 otherwise) [NI] -0.926 -2.81 -0.0140 0.0053 0.0087 

Vehicle characteristics  
     

Motorcycle indicator (1 if motorcycle, 0 otherwise) [SI] 2.762 5.04 -0.0204 -0.0040 0.0244 

Pickup truck indicator (1 if motorcycle, 0 otherwise) [MI] -1.712 -1.76 0.0087 -0.0097 0.0010 

Passenger car indicator (1 if passenger car, 0 otherwise) [NI] 0.634 2.42 0.0311 -0.0185 -0.0126 

Harmful event characteristics 
     

Harmful event off-road indicator (1 if the harmful event was off road, 0 otherwise) [SI] 0.878 2.60 -0.0089 -0.0010 0.0099 
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Harmful overturn indicator (1 if harmful event occurs with overturning, 0 otherwise) 

[MI] 

5.378 2.47 -0.0232 0.0260 -0.0028 

Harmful fixed object indicator (1 if harmful event occurred with roadside fixed object, 0 

otherwise) [NI] 

-1.124 -3.88 -0.0685 0.0324 0.0361 

Roadway characteristics 
     

Large shoulder width indicator (1 if right shoulder width between 6 to 10 ft., 0 

otherwise) [NI] 

-0.605 -2.37 -0.0276 0.0141 0.0135 

Driver characteristics 
     

Negligent driver indicator (1 if negligent driving, 0 otherwise) [MI] 1.561 1.91 -0.0291 0.0327 -0.0036 

Number of observations 1,154 

Log-likelihood at zero -1267.798 

Log-likelihood at convergence -850.129 

ρ2 = 1 – LL(β)/LL(0) 0.329 

SI = Severe Injury; MI = Minor Injury; NI = No Injury 
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Table 6.4. Mixed logit model with heterogeneity in mean and variance for single-vehicle work-zone crashes in Florida, 2013.  

Variables 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [MI] -1.935 -11.47  

Constant [SI]  -2.149 -8.60 

Random parameter (normally distributed)       

Shoulder-median work indicator (1 if work on shoulder and median, 0 otherwise) [SI] -4.616 -1.68 -0.0150 -0.0065 0.0215 

(Standard deviation of should-median work) (4.091) (2.19)    

Heterogeneity in the mean of random parameter 
     

Shoulder-median work [SI]: Older driver indicator  

(1 if driver’s age is 65 years and above, 0 otherwise) 

2.186 1.67    

Heterogeneity in the variance of random parameter 
     

Shoulder-median work [SI]: Negligent driver indicator  

(1 if negligent driving, 0 otherwise) 

0.226 1.71    

Environmental characteristics 
     

Rain indicator (1 if crash occurred at the time of raining, 0 otherwise) [NI] 0.285 1.82 0.0123 -0.0106 -0.0017 

Dark indicator (1 if crash occurred at the time of darkness, 0 otherwise) [MI] -0.519 -2.63 0.0116 -0.0124 0.0008 

Traffic characteristics 
     

Low traffic volume indicator (1 if average annual daily traffic is below 40,000 

vehicles/day, 0 otherwise) [NI] 

  -0.250 -1.87 -0.0176 0.0150 0.0026 

Average percent of large trucks (1 if large truck volume between 7.5% and 12.5% of all 

traffic, 0 otherwise) [MI]  

   0.252 1.87 -0.0241 0.0258 -0.0017 

Temporal characteristics 
     

Afternoon indicator (1 if time of day is between 12 pm to 2:59 pm, 0 otherwise) [MI]   -0.494 -2.47 0.0104 -0.0113 0.0008 

Vehicle characteristics  
     

Motorcycle indicator (1 if motorcycle, 0 otherwise) [MI] 1.444 5.05 -0.0163 0.0188 -0.0025 

Pickup truck indicator (1 if motorcycle, 0 otherwise) [SI] -2.463 -2.86 0.0030 0.0012 -0.0041 

Passenger car indicator (1 if passenger car, 0 otherwise) [SI] -1.686 -4.44 0.0166 0.0063 -0.0229 

Work zone characteristics 
     

Work zone geometry indicator (1 if crashes were identified as work zone geometry 

related, 0 otherwise) [SI] 

-0.902 -2.40 0.0046 0.0018 -0.0064 
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Harmful event characteristics 
     

Most harmful median indicator (1 if most harmful event occurs in the median, 0 

otherwise) [NI] 

-0.851 -4.82 -0.0444 0.0384 0.0060 

Harmful median indicator (1 if harmful event occurred in the median, 0 otherwise) [SI] 1.461 2.77 -0.0039 -0.0020 0.0059 

Most harmful shoulder indicator (1 if harmful event occurs in the shoulder, 0 otherwise) 

[NI] 

-0.711 -4.51 -0.0491 0.0425 0.0066 

Harmful overturn indicator (1 if harmful event occurred with overturning, 0 otherwise) 

[MI] 

1.775 7.02 -0.0250 0.0271 -0.0022 

Harmful fixed object indicator (1 if harmful event occurred with roadside fixed object, 0 

otherwise) [NI] 

-0.399 -2.66   -0.0454 0.0387 0.0067 

Number of observations 1,440 

Log-likelihood at zero -1582.002 

Log-likelihood at convergence -1027.924 

ρ2 = 1 – LL(β)/LL(0) 0.350 

SI = Severe Injury; MI = Minor Injury; NI = No Injury 
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Table 6.5. Mixed logit model with heterogeneity in mean and variance for single-vehicle work-zone crashes in Florida, 2014.  

Variables 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -3.041 -8.83  

Random parameter (normally distributed)       

Constant [MI] -5.921 -2.97    

(Standard deviation of parameter distribution) (4.250) (2.75)    

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Clear weather indicator (1 if clear weather, 0 otherwise) -1.221 -2.05    

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Negligent driver indicator (1 if negligent driving, 0 otherwise) 0.337 2.15    

Environmental characteristics 
     

Rain indicator (1 if it is rainy, 0 otherwise) [SI] -1.263 -2.88 0.0065 0.0008 -0.0074 

Traffic characteristics 
     

Average percent of large trucks (1 if large truck volume between 7.5% and 12.5% of all 

traffic, 0 otherwise) [MI]  

1.565 2.40 -0.0407 0.0458 -0.0051 

Temporal characteristics 
     

Earlier months indicator (1 if crash occurred January to April, 0 otherwise) [SI] -0.867 -2.70 0.0110 0.0013 -0.0123 

Spatial characteristics  
     

District 4 indicator (1 if crash occurred in District 4, 0 otherwise) [NI] 0.695 1.87 0.0117 -0.0081 -0.0036 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [NI] 1.158 2.81 0.0117 -0.0083 -0.0034 

District 7 indicator (1 if crash occurred in District 7, 0 otherwise) [SI] 0.942 3.14 -0.0154 -0.0025 0.0180 

Vehicle characteristics  
     

Motorcycle indicator (1 if motorcycle, 0 otherwise) [SI] 2.592 5.57 -0.0137 -0.0033 0.0170 

Work Zone characteristics 
     

Absence of enforcement indicator (1 if no enforcement was present, 0 otherwise) [MI]  1.655 1.65 -0.0815 0.0912 -0.0097 

Harmful event characteristics 
     

Harmful overturn indicator (1 if harmful event occurs with overturning, 0 otherwise) 

[MI] 

4.141 2.93 -0.0221 0.0282 -0.0062 

Most harmful shoulder indicator (1 if most harmful event occurs in the shoulder, 0    -1.680 -4.80 -0.0747 0.0342    0.0405 
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otherwise) [NI] 

Most harmful median indicator (1 if most harmful event occurs in the median, 0    

 otherwise) [NI] 

-1.147 -3.18 -0.0316 0.0167 0.0149 

Roadway characteristics 
     

Rural interstate indicator (1 if crash occurred on rural interstate, 0 otherwise) [MI] 1.657 1.94 -0.0143 0.0161 -0.0017 

Driver characteristics 
     

Old driver indicator (1 if driver’s age between 50 to 65 years, 0 otherwise) [MI]  -1.153 -1.66 0.0086 -0.0098 0.0011 

Number of observations 1,111 

Log-likelihood at zero -1220.558 

Log-likelihood at convergence -787.273 

ρ2 = 1 – LL(β)/LL(0) 0.355 

SI = Severe Injury; MI = Minor Injury; NI = No Injury 
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Table 6.6. Mixed logit model with heterogeneity in mean and variance for single-vehicle work-zone crashes in Florida, 2015.  

Variables 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [SI]  -2.573 -9.49  

Random parameter (normally distributed)       

Constant [MI] -3.664 -3.24    

(Standard deviation of parameter distribution) (3.391) (2.64)    

Heterogeneity in the mean of random parameter 
     

Constant [MI]: Young driver indicator (1 if driver’s age below 30 years, 0 otherwise, 0 

otherwise) 

0.689 1.90      

Heterogeneity in the variance of random parameter 
     

Constant [MI]: Rain indicator (1 if it is rainy, 0 otherwise) 0.479 2.03    

Environmental characteristics 
     

Rain indicator (1 if it is rainy, 0 otherwise) [NI] 1.531 3.99 0.0234 -0.0164 -0.0070 

Spatial characteristics  
     

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) [SI] -1.345 -2.55 0.0032 0.0004 -0.0036 

District 3 indicator (1 if crash occurred in District 3, 0 otherwise) [MI] 0.679 2.78 -0.0065 0.0072 -0.0007 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [NI] 0.611 1.80 0.0089 -0.0061 -0.0028 

Vehicle characteristics  
     

Motorcycle indicator (1 if motorcycle, 0 otherwise) [MI] 1.216 4.50 -0.0107 0.0122 -0.0016 

Passenger car indicator (1 if passenger car, 0 otherwise) [SI] -1.036 -4.63 0.0190 0.0027 -0.0217 

Work zone characteristics      

Presence of workers indicator (1 if workers were present, 0 otherwise) [NI] 0.575 2.65 0.0228 -0.0141 -0.0088 

Transition area indicator (1 if the crash occurred in the work zone’s transition area, 0 

otherwise) [MI] 

1.012 2.08 -0.0119 0.0131 -0.0012 

Harmful event characteristics 
     

Most harmful shoulder indicator (1 if most harmful event occurred in the shoulder, 0 

otherwise) [SI] 

0.963 3.53 -0.0211 -0.0030 0.0241 

Harmful overturn indicator (1 if harmful event occurs with overturning, 0 otherwise) 

[MI] 

1.887 2.52 -0.0121 0.0140 -0.0020 
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Harmful right shoulder indicator (1 if harmful event occurs on the right shoulder, 0 

otherwise) [MI] 

1.471 2.79 -0.0226 0.0253 -0.0028 

Most harmful median indicator (1 if most harmful event occurs in the median, 0 

otherwise) [NI] 

-1.162 -4.08 -0.0368 0.0198 0.0170 

Roadway characteristics 
     

Urban interstate indicator (1 if crash occurred on urban interstate, 0 otherwise) [SI] 0.567 2.10 -0.0084 -0.0014 0.0098 

Rural interstate indicator (1 if crash occurred on rural interstate, 0 otherwise) [NI] -0.615 -2.26` -0.0121 0.0060 0.0061 

Driver characteristics 
     

Negligent driver indicator (1 if negligent driving, 0 otherwise) [SI] 0.665 2.77 -0.0132 -0.0021 0.0153 

Over steering indicator (1 if driver actions involved over steering, 0 otherwise) [SI] 1.266 2.04 -0.0025 -0.0005 0.0030 

Number of observations 1,524 

Log-likelihood at zero -1674.285 

Log-likelihood at convergence -1100.637 

ρ2 = 1 – LL(β)/LL(0) 0.343 

SI = Severe Injury; MI = Minor Injury; NI = No Injury 
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Table 6.7. Mixed logit model with heterogeneity in mean and variance for single-vehicle work-zone crashes in Florida, 2016.  

Variables 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [MI] -1.054 -7.83    

Constant [SI]  -2.203 -9.68 

Random parameter (normally distributed)       

Young driver indicator (1 if driver’s age below 30 years, 0 otherwise) [MI] -1.124 -1.24 -0.0182 0.0202 -0.0020 

(Standard deviation of parameter distribution)  (2.573) (1.79)    

Heterogeneity in the mean of random parameter 
     

Young driver (below 30 years) [MI]: Motorcycle indicator (1 if motorcycle, 0 

otherwise)  

4.458 2.34    

Heterogeneity in the variance of random parameter 
     

Young driver (below 30 years) [MI]: Earlier months indicator (1 if crash occurred 

January to April, 0 otherwise)  

0.694 2.37    

Traffic characteristics 
     

Average percent of large trucks (1 if large truck volume between 7.5% and 12.5% of all 

traffic, 0 otherwise) [NI] 

-0.721 -3.60 -0.0244 0.0172 0.0072 

Spatial characteristics  
     

District 1 indicator (1 if crash occurred in District 1, 0 otherwise) [MI] -0.426 -2.29 0.0090 -0.0102 0.0012 

District 3 indicator (1 if crash occurred in District 3, 0 otherwise) [SI] -1.413 -1.81 0.0013 0.0004 -0.0016 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [NI] 0.489 2.20 0.0079 -0.0059 -0.0020 

Vehicle characteristics  
     

Motorcycle indicator (1 if motorcycle, 0 otherwise) [SI] 2.047 6.34 -0.0114 -0.0041 0.0155 

Passenger car indicator (1 if passenger car, 0 otherwise) [SI] -0.420 -1.91 0.0088 0.0021 -0.0109 

Work zone characteristics 
     

Lane shift indicator (1 if lane shift work, 0 otherwise) [MI] 0.520 2.26 -0.0069 0.0074 -0.0005 

Shoulder-median work indicator (1 if work on shoulder and median, 0 otherwise) [SI] 0.463 2.07 -0.0157 -0.0045 0.0202 

Transition area indicator (1 if the crash occurred in the work zone’s transition area, 0 

otherwise) [SI] 

-0.668 -1.84 0.0028 0.0008 -0.0036 

Harmful event characteristics      

Harmful event on-road indicator (1 if harmful event occurred on road, 0 otherwise) [NI] 0.506 3.77 0.0390 -0.0284 -0.0106 
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Harmful overturn indicator (1 if harmful event occurs with overturning, 0 otherwise) 

[MI] 

1.031 4.68 -0.0143 0.0168 -0.0025 

Roadway characteristics 
     

Large shoulder width indicator (1 if right shoulder width between 6 to 10 ft., 0 

otherwise) [NI] 

0.578 2.43 0.0130 -0.0093 -0.0037 

Driver characteristics 
     

Negligent driver indicator (1 if negligent driving, 0 otherwise) [MI] 0.314 2.14 -0.0141 0.0156 -0.0015 

Over steering indicator (1 if driver actions involved over steering, 0 otherwise) [SI] 0.885 1.81 -0.0020 -0.0006 0.0026 

Number of observations 1,701 

Log-likelihood at zero -1868.739 

Log-likelihood at convergence -1271.449 

ρ2 = 1 – LL(β)/LL(0) 0.319 

SI = Severe Injury; MI = Minor Injury; NI = No Injury 
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Table 6.8. Mixed logit model with heterogeneity in mean and variance for single-vehicle work-zone crashes in Florida, 2017.  

Variables 
Parameter 

Estimates 
t-stat 

Marginal Effects 

No Injury Minor Injury Severe Injury 

Constant [MI] -1.685 -9.22    

Constant [SI]  -4.334 -9.03 

Random parameter (normally distributed)       

Young driver indicator (1 if driver’s age below 30 years, 0 otherwise) [MI] -7.272 -1.97    

(Standard deviation of parameter distribution) (6.168) (2.58)    

Shoulder-median work indicator (1 if work on shoulder and median, 0 otherwise) [SI] -1.104 -0.95 -0.0188 -0.0072 0.0260 

(Standard deviation of parameter distribution) (2.727) (2.72)    

Heterogeneity in the mean of random parameter 
     

Shoulder-median work indicator [SI]: Rain indicator (1 if it is rainy, 0 otherwise)  -1.539 -1.75    

Heterogeneity in the variance of random parameter 
     

Shoulder-median work indicator [SI]: Most harmful median indicator (1 if most harmful 

event occurs in the median, 0 otherwise) 

0.855 3.07    

Traffic characteristics 
     

Low traffic volume indicator (1 if average annual daily traffic is below 40,000 

vehicles/day, 0 otherwise) [SI] 

1.286 2.61 -0.0061 -0.0018 0.0079 

Temporal characteristics      

Later months indicator (1 if crash occurred October to December, 0 otherwise) [SI] -1.552 -2.27 0.0036 0.0012 -0.0048 

Spatial characteristics  
     

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) [NI] 0.366 1.95 0.0094 -0.0081 -0.0014 

District 3 indicator (1 if crash occurred in District 3, 0 otherwise) [MI] 0.526 2.08 -0.0064 0.0067 -0.0003 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) [NI] 0.492 2.11 0.0076 -0.0069 -0.0007 

Vehicle characteristics  
     

Motorcycle indicator (1 if motorcycle, 0 otherwise) [MI] 2.656 5.96 -0.0148 0.0157 -0.0009 

Passenger car indicator (1 if passenger car, 0 otherwise) [MI] 0.314 2.22 -0.0270 0.0280    -0.0010 

Work zone characteristics 
     

Lane-closure indicator (1 if lane shift work, 0 otherwise) [MI] -0.413 -2.08   0.0087 -0.0090 0.0003 

Presence of workers indicator (1 if workers were present, 0 otherwise) [NI] 0.493 3.24 0.0240 -0.0207 -0.0033 
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Non-work zone indicator (1 if crashes were identified not related to work zone 

geometry, 0 otherwise) [NI] 

-0.299 -2.09 -0.0335 0.0294 0.0041 

Harmful event characteristics      

Most harmful shoulder indicator (1 if most harmful event occurs in the shoulder, 0 

otherwise) [SI] 

1.471 3.05 -0.0132 -0.0040 0.0172 

Harmful event off-road indicator (1 if the harmful event was off road, 0 otherwise) [SI] 1.040 2.14 -0.0063 -0.0022 0.0085 

Harmful overturn indicator (1 if harmful event occurs with overturning, 0 otherwise) 

[MI] 

0.893 3.58 -0.0099 0.0105 -0.0006 

Most harmful median indicator (1 if most harmful event occurs in the median, 0 

otherwise) [NI] 

-0.507 -2.47   -0.0100 0.0086 0.0013 

Roadway characteristics 
     

Urban interstate indicator (1 if crash occurred on urban interstate, 0 otherwise) [SI] 1.658 3.19 -0.0111 -0.0037 0.0148 

Urban toll way indicator (1 if crash occurred on an urban toll way, 0 otherwise) [MI] -0.483 -1.65 -0.0046 0.0041 0.0005 

Driver characteristics      

Negligent driver indicator (1 if negligent driving, 0 otherwise) [MI] 0.281 2.03 -0.0081 -0.0023 0.0104 

Older driver indicator (1 if driver’s age is 65 years and above, 0 otherwise) [NI] -0.578 -2.47 -0.0092 0.0079 0.0013 

Over steering indicator (1 if driver actions involved over steering, 0 otherwise) [MI] 0.810 2.26 -0.0036 0.0037 -0.0002 

Number of observations 1,500 

Log-likelihood at zero -1647.918 

Log-likelihood at convergence -984.382 

ρ2 = 1 – LL(β)/LL(0) 0.403 

SI = Severe Injury; MI = Minor Injury; NI = No Injury 
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Table 6.9. Temporal comparison of marginal effects for no injuries.  

Variables 
No Injury 

2012 2013 2014 2015 2016 2017 

Environmental characteristics 
      

Rain indicator (1 if crash occurred at the time of raining, 0 otherwise) 0.0040 0.0123 0.0065 0.0234 – – 

Dark indicator (1 if crash occurred at the time of darkness, 0 otherwise) – 0.0116 – – – – 

Traffic characteristics 
      

Low traffic condition indicator (1 if average annual daily traffic is below 4,000 

vehicles/day, 0 otherwise) 

-0.0150 -0.0176 – – – -0.0061 

Average percent of large trucks  

(1 if large truck volume between 7.5% and 12.5% of all traffic, 0 otherwise) 

-0.0384 -0.0241 -0.0407 – -0.0244 – 

Temporal characteristics       

Late night indicator (1 if time of day is between 8 pm to 11:59 pm, 0 otherwise) -0.0073 – – – – – 

Afternoon indicator (1 if time of day is between 12 to 2:59 PM, 0 otherwise) – 0.0104 – – – – 

Earlier months indicator (1 if crash occurred January to April, 0 otherwise) -0.0161 – 0.0110 – – – 

Later months indicator (1 if crash occurred October to December, 0 otherwise) – – – – – 0.0036 

Spatial characteristics 
      

District 1 indicator (1 if crash occurred in District 1, 0 otherwise) – – – – 0.0090 – 

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) – – – 0.0032 – 0.0094 

District 3 indicator (1 if crash occurred in District 3, 0 otherwise) – – – -0.0065 0.0013 -0.0064 

District 4 indicator (1 if crash occurred in District 4, 0 otherwise) – –  – – – 

District 5 indicator  (1 if crash occurred in District 5, 0 otherwise) -0.0140 – – – – – 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) – – 0.0117 0.0089 0.0079 0.0076 

District 7 indicator (1 if crash occurred in District 7, 0 otherwise) – – -0.0154 – – – 

Vehicle characteristics 
      

Motorcycle indicator (1 if motorcycle, 0 otherwise) -0.0204 -0.0163 -0.0137 -0.0107 -0.0114 -0.0148 

Pickup truck indicator (1 if pickup, 0 otherwise) 0.0087 0.0030 – – – – 

Passenger car indicator (1 if passenger car, 0 otherwise) 0.0311 0.0166 – 0.0190 0.0088 -0.0270 
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Work zone characteristics 
      

Lane-closure work zone indicator (1 if lane closure, 0 otherwise) – – – – – 0.0087 

Lane shift indicator (1 if lane shift work, 0 otherwise) – – – – -0.0069 – 

Shoulder-median work indicator  (1 if work on shoulder and median, 0 otherwise) – – – – -0.0157 – 

Absence of enforcement indicator (1 if no enforcement was present, 0 otherwise) – – -0.0815 – – – 

Presence of workers indicator (1 if workers were present, 0 otherwise) – – – 0.0228 – 0.0240 

Non-work zone indicator  

(1 if crashes were identified not related to work zone geometry, 0 otherwise) 

– – – – – -0.0335 

Work zone geometry indicator  

(1 if crashes were identified as work zone geometry related, 0 otherwise) 
– 0.0046 – – – – 

Transition area indicator  

(1 if the crash occurred in the work zone’s transition area, 0 otherwise) 
– – – -0.0119 0.0028 – 

Harmful event characteristics 
      

Most harmful shoulder indicator  

(1 if most harmful event occurs in the shoulder, 0 otherwise) 
– -0.0491 -0.0747 -0.0211 – -0.0132 

Most harmful median indicator  

(1 if most harmful event occurs in the median, 0 otherwise) 
– -0.0444 -0.0316 -0.0368 – -0.0100 

Harmful event on-road indicator (1 if harmful event occurred on road, 0 otherwise) – – – – 0.0390 – 

Harmful event off-road indicator (1 if the harmful event was off road, 0 otherwise) -0.0089 – – – – -0.0063 

Harmful fixed object indicator  

(1 if harmful event occurred with roadside fixed object, 0 otherwise) 

-0.0685 -0.0454 – – – – 

Harmful right shoulder indicator  

(1 if harmful event occurs on the right shoulder, 0 otherwise) 
– – – -0.0226 – – 

Harmful median indicator  

(1 if harmful event occurs in the median, 0 otherwise) 
– -0.0039 – – – – 

Harmful overturn indicator  

(1 if harmful event occurs with overturning, 0 otherwise) 

-0.0232 -0.0250 -0.0221 -0.0121 -0.0143 -0.0099 

 

Roadway characteristics 
      

Large shoulder width indicator 

(1 if right shoulder width between 6 to 10 ft., 0 otherwise) 

-0.0276 – – – 0.0130 – 
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Urban interstate indicator  

(1 if crash occurred on urban interstate, 0 otherwise) 
– – – -0.0084 – -0.0111 

Rural interstate indicator  

(1 if crash occurred on rural interstate, 0 otherwise) 
– – -0.0143 -0.0121 – – 

Urban tollway indicator  

(1 if crash occurred on an urban tollway, 0 otherwise) 
– – – – – -0.0046 

Driver characteristics 
      

Old driver indicator (1 if driver’s age between 50 to 65 years, 0 otherwise) – – 0.0086 – – – 

Older driver indicator (1 if driver’s age is 65 years and above, 0 otherwise) – – – – – -0.0092 

Negligent driver indicator (1 if negligent driving, 0 otherwise) -0.0291 – – -0.0132 -0.0141 -0.0081 

Over steering indicator (1 if driver actions involved over steering, 0 otherwise) – – – -0.0025 -0.0020 -0.0036 
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Table 6.10. Temporal comparison of marginal effects for minor injuries.  

Variables 
Minor Injury 

2012 2013 2014 2015 2016 2017 

Environmental characteristics 
      

Rain indicator (1 if crash occurred at the time of raining, 0 otherwise) 0.0004 -0.0106 0.0008 -0.0164 – – 

Dark indicator (1 if crash occurred at the time of darkness, 0 otherwise) – -0.0124 – – – – 

Traffic characteristics 
      

Low traffic condition indicator (1 if average annual daily traffic is below 4,000 

vehicles/day, 0 otherwise) 

-0.0019 0.0150 – – – -0.0018 

Average percent of large trucks 

(1 if large truck volume between 7.5% and 12.5% of all traffic, 0 otherwise) 

0.0429 0.0258 0.0458 – 0.0172 – 

Temporal characteristics       

Late night indicator (1 if time of day is between 8 pm to 11:59 pm, 0 otherwise) -0.0009 – – – – – 

Afternoon indicator  (1 if time of day is between 12 to 2:59 PM, 0 otherwise) – -0.0113 – – – – 

Earlier months indicator (1 if crash occurred January to April, 0 otherwise) 0.0181 – 0.0013 – – – 

Later months indicator (1 if crash occurred October to December, 0 otherwise) – – – – – 0.0012 

Spatial characteristics 
      

District 1 indicator (1 if crash occurred in District 1, 0 otherwise) – – – – -0.0102 – 

District 2 indicator (1 if crash occurred in District 2, 0 otherwise) – – – 0.0004 – -0.0081 

District 3 indicator (1 if crash occurred in District 3, 0 otherwise) – – – 0.0072 0.0004 0.0067 

District 4 indicator  (1 if crash occurred in District 4, 0 otherwise) – – -0.0081 – – – 

District 5 indicator  (1 if crash occurred in District 5, 0 otherwise) 0.0053 – – – – – 

District 6 indicator (1 if crash occurred in District 6, 0 otherwise) – – -0.0083 -0.0061 -0.0059 -0.0069 

District 7 indicator (1 if crash occurred in District 7, 0 otherwise) – – -0.0025 – – – 

Vehicle characteristics 
      

Motorcycle indicator (1 if motorcycle, 0 otherwise) -0.0040 0.0188 -0.0033 0.0122 -0.0041 0.0157 

Pickup truck indicator (1 if pickup, 0 otherwise) -0.0097 0.0012 – – – – 

Passenger car indicator (1 if passenger car, 0 otherwise) -0.0185 0.0063 – 0.0027 0.0021 0.0270 
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Work zone characteristics 
      

Lane-closure work zone indicator (1 if lane closure, 0 otherwise) – – – – – -0.0090 

Lane shift indicator (1 if lane shift work, 0 otherwise) – – – – 0.0074 – 

Shoulder-median work indicator (1 if work on shoulder and median, 0 otherwise) – – – – -0.0045 – 

Absence of enforcement indicator (1 if no enforcement was present, 0 otherwise) – – 0.0912 – – – 

Presence of workers indicator (1 if workers were present, 0 otherwise) – – – -0.0141 – -0.0207 

Non-work zone indicator (1 if crashes were identified not related to work zone 

geometry, 0 otherwise) 

– – – – – 0.0294 

Work zone geometry indicator  

(1 if crashes were identified as work zone geometry related, 0 otherwise) 
– 0.0018 – – – – 

Transition area indicator  

(1 if the crash occurred in the work zone’s transition area, 0 otherwise) 
– – – 0.0131 0.0008 – 

Harmful event characteristics 
      

Most harmful shoulder indicator  

(1 if most harmful event occurs in the shoulder, 0 otherwise) 
– 0.0425 0.0342    -0.0030 – -0.0040 

Most harmful median indicator  

(1 if most harmful event occurs in the median, 0 otherwise) 
– 0.0384 0.0167 0.0198 – 0.0086 

Harmful event on-road indicator  

(1 if harmful event occurred on road, 0 otherwise) 
– – – – -0.0284 – 

Harmful event off-road indicator  

(1 if the harmful event was off road, 0 otherwise) 

-0.0010 – – – – -0.0022 

Harmful fixed object indicator  

(1 if harmful event occurred with roadside fixed object, 0 otherwise) 

0.0324 0.0387 – – – – 

Harmful right shoulder indicator  

(1 if harmful event occurs on the right shoulder, 0 otherwise) 
– – – 0.0253 – – 

Harmful median indicator  

(1 if harmful event occurs in the median, 0 otherwise) 
– -0.0020 – – – – 

Harmful overturn indicator  

(1 if harmful event occurs with overturning, 0 otherwise) 

0.0260 0.0271 0.0282 0.0140 0.0168 0.0105 

Roadway characteristics 
      

Large shoulder width indicator 

(1 if right shoulder width between 6 to 10 ft., 0 otherwise) 

0.0141 – – – -0.0093 – 
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Work zone geometry indicator  

(1 if crashes were identified as work zone geometry related, 0 otherwise) 
– 0.0018 – – – – 

Urban interstate indicator  

(1 if crash occurred on urban interstate, 0 otherwise) 
– – – -0.0014 – -0.0037 

Rural interstate indicator  

(1 if crash occurred on rural interstate, 0 otherwise) 
– – 0.0161 0.0060 – – 

Urban tollway indicator  

(1 if crash occurred on an urban tollway, 0 otherwise) 
– – – – – 0.0041 

Driver characteristics 
      

Old driver indicator (1 if driver’s age between 50 to 65 years, 0 otherwise) – – -0.0098 – – – 

Older driver indicator (1 if driver’s age is 65 years and above, 0 otherwise) – – – – – 0.0079 

Negligent driver indicator (1 if negligent driving, 0 otherwise) 0.0327 – – -0.0021 0.0156 -0.0023 

Over steering indicator (1 if driver actions involved over steering, 0 otherwise) – – – -0.0005 -0.0006 0.0037 
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Table 6.11. Temporal comparison of marginal effects for severe injuries. 

Variables 
Severe Injury 

2012 2013 2014 2015 2016 2017 

Environmental characteristics 
      

Rain indicator (1 if crash occurred at the time of raining, 0 otherwise) -0.0044 -0.0017 -0.0074 -0.0070 – – 

Dark indicator (1 if crash occurred at the time of darkness, 0 otherwise) – 0.0008 – – – – 

Traffic characteristics 
      

Low traffic condition indicator  

(1 if average annual daily traffic is below 40,000 vehicles/day, 0 otherwise) 

0.0169 – -0.0051 – – 0.0079 

Average percent of large trucks  

(1 if large truck volume between 7.5% and 12.5% of all traffic, 0 otherwise) 

-0.0046 -0.0017 -0.0051 – 0.0072 – 

Temporal characteristics       

Late night indicator  (1 if time of day is between 8 pm to 11:59 pm, 0 otherwise) 0.0083 – – – – – 

Afternoon indicator  (1 if time of day is between 12 to 2:59 pm, 0 otherwise) – 0.0007 – – – – 

Earlier months indicator  (1 if crash occurred January to April, 0 otherwise) -0.0020 – -0.0123 – – – 

Later months indicator  (1 if crash occurred October to December, 0 otherwise) – – – – – -0.0048 

Spatial characteristics 
      

District 1 indicator (1 if crash occurred in District 1, 0 otherwise) – – – – 0.0012 – 

District 2 indicator  (1 if crash occurred in District 2, 0 otherwise) – – – -0.0036 – -0.0014 

District 3 indicator (1 if crash occurred in District 3, 0 otherwise) – – – -0.0007 -0.0016 -0.0003 

District 4 indicator (1 if crash occurred in District 4, 0 otherwise) – – -0.0036 – – – 

District 5 indicator (1 if crash occurred in District 5, 0 otherwise) 0.0087 – – – – – 

District 6 indicator  (1 if crash occurred in District 6, 0 otherwise) – – -0.0034 -0.0028 -0.0020 -0.0007 

District 7 indicator  (1 if crash occurred in District 7, 0 otherwise) – – 0.0180 – – – 

Vehicle characteristics 
      

Motorcycle indicator (1 if motorcycle, 0 otherwise) 0.0244 -0.0025 0.0170 -0.0016 0.0155 -0.0009 

Pickup truck indicator (1 if pickup, 0 otherwise) 0.0010 -0.0041 – – – – 

Passenger car indicator (1 if passenger car, 0 otherwise) -0.0126 -0.0229 – -0.0217 -0.0109 -0.0010 

Work zone characteristics 
      

Lane-closure work zone indicator (1 if lane closure, 0 otherwise) – – – – – 0.0003 
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Lane shift indicator (1 if lane shift work, 0 otherwise) – – – – -0.0005 – 

Shoulder-median work indicator (1 if work on shoulder and median, 0 otherwise) – – – – 0.0202 – 

Absence of enforcement indicator (1 if no enforcement was present, 0 otherwise) – – -0.0097 – – – 

Presence of workers indicator (1 if workers were present, 0 otherwise) – – – -0.0088 – -0.0033 

Non-work zone indicator (1 if crashes were identified not related to work zone 

geometry, 0 otherwise) 

– – – – – 0.0041 

Work zone geometry indicator  

(1 if crashes were identified as work zone geometry related, 0 otherwise) 

– -0.0064 – – – – 

Transition area indicator  

(1 if the crash occurred in the work zone’s transition area, 0 otherwise) 

– – – -0.0012 -0.0036 – 

Harmful event characteristics 
      

Most harmful shoulder indicator  

(1 if most harmful event occurs in the shoulder, 0 otherwise) 

– 0.0066 0.0405 0.0241 – 0.0172 

Most harmful median indicator  

(1 if most harmful event occurs in the median, 0 otherwise) 

– 0.0060 0.0149 0.0170 – 0.0013 

Harmful event on-road indicator  

(1 if harmful event occurred on road, 0 otherwise) 

– – – – -0.0106 – 

Harmful event off-road indicator  

 (1 if the harmful event was off road, 0 otherwise) 

0.0099 – – – – 0.0085 

Harmful fixed object indicator  

(1 if harmful event occurred with roadside fixed object, 0 otherwise) 

0.0361 0.0067 – – – – 

Harmful right shoulder indicator  

(1 if harmful event occurs on the right shoulder, 0 otherwise) 

– – – -0.0028 – – 

Harmful median indicator  

(1 if harmful event occurs in the median, 0 otherwise) 

– 0.0059 – – – – 

Harmful overturn indicator  

(1 if harmful event occurs with overturning, 0 otherwise) 

-0.0028 -0.0022 -0.0062 -0.0020 -0.0025 -0.0006 

Roadway characteristics 
      

Large shoulder width indicator 

(1 if right shoulder width between 6 to 10 ft., 0 otherwise) 

0.0135 – – – -0.0037 – 

Urban interstate indicator (1 if crash occurred on urban interstate, 0 otherwise) – – – 0.0098 – 0.0148 

Rural interstate indicator (1 if crash occurred on rural interstate, 0 otherwise) – – -0.0017 0.0061 – – 

Urban tollway indicator (1 if crash occurred on urban tollway, 0 otherwise) – – – – – 0.0005 
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Driver characteristics 
      

Old driver indicator (1 if driver’s age between 50 to 65 years, 0 otherwise) – – 0.0011 – – – 

Older driver indicator (1 if driver’s age is 65 years and above, 0 otherwise) – – – – – 0.0013 

Negligent driver indicator (1 if negligent driving, 0 otherwise) -0.0036 – – 0.0153 -0.0015 0.0104 

Over steering indicator (1 if driver actions involved over steering, 0 otherwise) – – – 0.0030 0.0026 -0.0002 
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(Table 6.5), the mean of constant-term parameter specific to minor injury increased if the crash 

occurred in clear weather and the variance of the parameter increased if negligent driving was 

involved in the crash. For 2015 (Table 6.6), the mean of the constant-term parameter specific to 

minor injury increased if a young driver was involved and the variance of the parameter increased 

if the crash occurred in the rain. For 2016 (Table 6.7), the mean of the younger-driver parameter 

specific to minor injury increased if a motorcycle was involved and the variance of the parameter 

increased if the crash occurred in earlier months of the year (January to April). For 2017 (Table 

6.8), the mean of the shoulder-median-work parameter specific to severe injury increased if the 

crash occurred in the rain and the variance of the parameter increased if the most harmful event 

occurred in the median. The differences in the effect of the constant term and other parameters 

across injury-severity observations and between years suggests considerable temporal instability 

in the unobserved heterogeneity over time.  

Regarding environmental conditions, rainy weather was found to decrease severe injury 

crashes relative to other weather categories from 2012 to 2015, with the inconsistency of the 

marginal effects between years suggesting considerable temporal instability in this effect (Table 

6.11). The fact that rainy weather is consistently associated with a lower probability of severe 

driver injury may reflect drivers being more cautious with their driving through work zones in 

inclement weather conditions (Osman et al., 2018). In addition, dark conditions at the time of work 

zone crashes were found to be statistically significant only in 2013, where they increased the 

likelihood of severe driver injuries. 

Table 6.11 shows that work zones with a traffic volumes less than 40,000 vehicles/day 

were found to increase the likelihood of severe driver injuries in 2012 and 2017, but to decrease 

severe injuries in 2014, and to be statistically insignificant in other years. Table 6.10 shows work 
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zones that had large-truck (trucks with greater than 10,000 pound gross vehicle weight) 

percentages between 7.5% and 12.5% of the total traffic volume were found to result in increases 

in minor driver-injury probabilities in 2012, 2013, 2014, and 2016, but this indicator variable did 

not have a statistically significant effect in 2015 and 2017. These two traffic-related variables 

provide information on the effect that traffic characteristics may have on speed and other factors 

that could affect resulting injuries in single-vehicle crashes, and they both suggest temporal 

instability to varying degrees. 

Looking at temporal characteristics, Table 6.11 shows that crashes occurring between 

January 1 and April 30 were found to decrease the likelihood of severe driver-injuries in 2012 and 

2014, although this early-year effect was statistically insignificant in 2013, 2015, 2016 and 2017. 

Crashes occurring between October 1 and December 31 were found to decrease the likelihood of 

severe driver-injuries only in 2017, although this late-year effect was statistically insignificant in 

2012-16. In addition, crashes occurring between 8PM to midnight and 12PM to 3PM were found to 

be statistically significant in 2012 and 2013, respectively, with higher likelihoods of severe driver 

injury. These findings show an interesting statistical shift in seasonal effects over time, some of 

which could potentially be explained by the specific nature of the projects undertaken over time. 

Turning to the Florida Department of Transportation District effects shown in Tables 6.9, 

6.10, and 6.11, it was found that some districts relative to other districts were significant in only 

one or just a few years over the 6-year analysis period. District 1 (which includes Naples) was 

significant only in 2016 (resulting in a 0.0012 higher probability of severe injury). District 2 (which 

includes Jacksonville) was significant in 2015 and 2017 (resulting in a 0.0036 and a 0.0014 lower 

probability of severe injury, respectively). District 3 (which includes Tallahassee) was significant 

in 2015, 2016, and 2017 (resulting in a with 0.0007, 0.0016, and 0.0003 lower probabilities of 
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severe injury, respectively). District 4 (which includes Fort Lauderdale) was significant in only 

2014 (resulting in a 0.0036 lower probability of severe injury). District 5 (which includes Orlando) 

was significant in only 2012 (resulting in a 0.0087 higher probability of severe injury). District 6 

(which includes Miami) was found to have statistically significant effects from 2014 to 2017, with 

marginal effects that decrease somewhat over time. The consistency of this finding over these more 

recent years may suggest differences in work-zone practices or driver behavior in the Miami region 

relative to other regions of the state. Finally, District 7 (which includes Tampa) was significant 

only in 2014 (resulting in a 0.018 higher probability of severe injury).  

Vehicle characteristics shown in Tables 6.9, 6.10, and 6.11 indicate that, relative to other 

vehicle types, motorcycles, passenger cars, and pickup trucks were found to be statistically 

significant in work-zone crashes for 2012-17, 2012-13, and 2015-17, and 2012-13, respectively. 

Passenger cars were found to decrease the likelihood of severe driver injuries in 2012-13 and 2015-

17. Motorcycles were found to increase the likelihood of severe rider injuries in 2012, 2014, and 

2016, but to decrease severe injuries in 2013, 2015, and 2017. Pickup trucks were found to increase 

the likelihood of severe driver injuries in 2012 but decrease them in 2013. Passenger cars also had 

a notably higher probability of no injuries relative to other vehicle types (not significant in 2014) 

and to increase with a 0.0311 in 2012, 0.0166 in 2013, 0.019 in 2015, and 0.0088 in 2016, but had 

a 0.0270 higher probability of minor injuries in 2017  relative to other vehicle types. 

Work-zone characteristics in Tables 6.9, 6.10, and 6.11 show that, although statistically 

insignificant in 2012 to 2015 and 2017, crashes that occurred in work zones with shoulder-median 

work resulted in a higher probability of severe injury in 2016. Lane-closure and lane-shift work-

zone indicators were statistically significant only in 2017 (resulting in a higher probability of 

severe driver injury) and 2016 (resulting in a lower probability of severe driver injury), 
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respectively. Some of the attributes specific to work zones, such as, enforcement, workers, and 

non-work zone related factors were found to be statistically significant in different years over the 

analysis period. The absence of enforcement was found to increase the probability of minor driver 

injury in 2014, although this indicator variable was found statistically insignificant in 2012, 2013, 

2015 and 2017. The presence of workers was found to decrease severe and minor driver injuries 

in 2015 and 2017. Non-work zone attributes, particularly the factors not related to work zone 

geometry, were found to increase severe and minor driver injury only in 2017 and found to be 

statistically insignificant in 2012-16. Having the work zone geometry being identified as the 

contributing factor of the crash was found to be statistically significant only in 2013 (resulting in 

lower probability of severe driver injury). Finally, crashes that occurred in the work-zone’s 

transition area had a higher probability of resulting in a minor driver injury in 2016 and 2017.  

Overall, these work zone findings show considerable temporal instability, but it is 

important to exercise some caution in interpreting work zone characteristics. That is, although 

these characteristics are not endogenous in the classic sense (where reported crashes are used to 

alter the design characteristics of the work zone), the guidelines used to establish work zone 

characteristics are based on best practices which may have evolved from past crash data. However, 

this potential endogeneity would be further mitigated by temporal shifts, which would weaken the 

link between the effect of work zone characteristics (which were potentially influenced by past 

crash data) and current crash data. 

Regarding the harmful-event indicators shown in Tables 6.9, 6.10 and 6.11, a harmful event 

involving overturning was found to be consistently statistically significant over the analysis period, 

with higher probability of severe and minor injuries of drivers. However, most harmful events 

occurring on the right shoulder and median were found to be statistically significant only in 2013 
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and 2015, respectively. The most harmful event occurring at shoulder indicator produced some 

variation in marginal effects over time with a higher probability of severe driver injury relative to 

other harmful events in 2013-15, and 2017, but relatively lower likelihood of severe driver injury 

was observed with the most harmful event occurring in the median in the same time period, 

reflecting some temporal instability (see Table 6.11). Further evidence of temporal instability was 

suggested with the finding that a harmful event with a fixed object was statistically significant only 

in 2012-13 but insignificant in rest of the analysis period and harmful events occurring on-road 

and off-road were statistically significant only in 2016, and in 2012 and 2017, respectively. 

Turning to the marginal effects of roadway characteristics, although statistically 

insignificant in 2013-15, crashes that occurred in work zones that had large right-shoulder widths 

(between 6 and 10 feet) had a higher probability of resulting in a severe driver injury in 2012 but 

lower probability of resulting in severe driver injury in 2016 (Table 6.11). Moreover, the urban 

interstate indicator was found to be statistically significant in 2015 and 2017 (resulting in a higher 

probability of severe driver injury) and the rural interstate indicator was found to be statistically 

significant in 2014 (lower probability of severe driver injury) and 2015 (higher probability of 

severe driver injury). In contrast, the urban tollway indicator was found to be statistically 

significant only in 2017.  

Driver characteristics also played a role in many of the years. For example, relative to other 

age groups, drivers between 50 to 65 and above 65 years of age were found to have a higher 

probability of severe injury in 2014 and 2017 (Table 6.11), respectively, but such variables were 

not statistically significant in other years. Relative to other reasons, if negligent driving was 

identified as the primary reason for the crash, a higher probability of severe injury was found in 

2015 and 2017 (Table 6.11) and a higher probability of minor injury was found in 2012 and 2016 
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(Table 6.10), with the magnitudes of the marginal effects in these time found to be relatively close. 

Finally, Table 6.11 shows the driver over steering indicator was found to result in a higher 

likelihood of severe injury in 2015 and 2016, a lower likelihood of severe injury in 2017 (although 

the marginal effect was quite small), but was statistically insignificant in 2012, 2013, and 2014. 

Looking at the overall injury-severity percentages, at the beginning of the analysis period 

(2012), the distribution of crashes among severity levels was 54.5% no injury, 36.7% minor injury 

and 8.8% severe injury. At the end of the analysis period (2017) this distribution among severity 

levels shifted to 63.9% no injury, 27.2% minor injury and 8.9% severe injury. Thus, while the 

percent of crashes resulting in severe driver injuries remained relatively constant over this period, 

there was a shift from minor injuries to no injuries (this is also reflected in Figure 2). To explore 

this issue further with the estimated models, the parameters from the 2012 work zone model (Table 

6.3) were used to forecast 2017 crashes (using actual crash characteristics from the 2017 work 

zone crashes) and these predictions were compared with predictions based on the estimated 2017 

parameters also using 2017 data (to account for random parameters, predictions were made using 

simulation as was done in the simulated maximum likelihood estimation). This predictive 

comparison provides an aggregate assessment of how overall injury-severity probabilities have 

changed over time while controlling for actual crash characteristics. In this case, the 2012 

parameters predict 59.5% percent of crashes resulting in no injury in 2017 instead of the observed 

63.9% (see Figure 2), 31.0% percent of crashes resulting in minor injury instead of the observed 

27.2%, and 9.4% percent of crashes resulting in severe injury as opposed to the observed 8.9%. 

As mentioned above, in looking at Figure 2 and comparing 2012 and 2017, the observed crashes 

in both years have about the same percentage of severe injuries, but 2017 has a lower percentage 

of injury crashes and a higher percentage of no-injury crashes. The predictive comparison also 
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shows that 2012 parameters predict the same trend, although not to the magnitude that was 

observed (but 2012-parameter predictions also show an uptick in severe injuries relative to the 

observed value). This suggests that some of the observed injury-proportion trends shown in Figure 

2 are due to the specific characteristics of the observed crashes, but that fundamental temporal 

changes in the influence that crash characteristics are having on injury probabilities are also 

playing a role. Some of these changes may be the result of improvements in vehicle safety features 

over time or temporal changes in the risk profiles of individuals becoming involved in crashes as 

discussed in Mannering et al. (2020). Factors such as these will show up as temporal shifts in 

unobserved heterogeneity in the models estimated herein. 

 

6.6 Summary and Conclusions 

Using single-vehicle crash data in work-zones in Florida from 2012 to 2017, this study 

used a random parameters logit model (with heterogeneity in mean and variance) to explore the 

stability of factors determining driver-injury severities for each of year of analysis period: 2012-

17. Three driver injury levels were considered: no injury, minor injury (combining possible injury 

and non-incapacitating injury), and severe injury (combining incapacitating injury and fatal 

injury). The estimated models find a wide variety of factors significantly influencing driver-injury 

outcomes including environmental attributes, overall traffic and truck volume, spatial and temporal 

characteristics, vehicle type, work zone characteristics, harmful event characteristics, roadway 

geometry, and driver factors.  

Although there are some consistencies between each of the years (of the 42 variables found 

to be statistically significant in at least one of the year, only two of these were found to be 

statistically significant in all of these years), likelihood ratio tests show that the estimated 
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parameters were temporally unstable for driver injuries in Florida work-zone-related crashes from 

one year to the next over the 2012-17 analysis period. The cause of this instability is not necessarily 

clear. Past research has tended to argue that this instability is largely the result of fundamental 

changes in driving behavior (Mannering, 2018). However, this may not necessarily be the case 

with work-zones. Although Florida work-zone practices and traffic-control procedures did not 

change significantly over this time period considered, each work zone has a unique set of 

characteristics and, with the sample of work zones changing from one year to the next as highway 

maintenance and construction is undertaken, this work-zone variation could be a substantial source 

of the observed temporal instability. That is, although we do have a set of variables that describe 

work-zone characteristics, the unobserved heterogeneity from one work zone to the next could be 

a major source of the observed temporal instability. This is unlike traditional highway-section data 

(based on the same highway segments year after year) where the unobserved characteristics of the 

individual sections do not change drastically over time. The unique characteristics of individual 

work zones greatly complicate the interpretation of the temporal instability findings. 
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Chapter 7 

 

A National Estimate of the Zero-Price Effect for Public Electric 

Vehicle Charging: A Stated Preference Approach 
 

Trang Loung, Michael Maness, Smart Student 

7.1 Introduction  

Although, many researchers warn about the EVs being only as clean as the energy source, 

governments recognize their potential in the form of reducing greenhouse effect or atmospheric 

and noise pollution and thus exploration of factors that may contribute to their further uptake (such 

as free charging) is worthy investigating.  

Electric vehicle (EV) sales and electric vehicle infrastructure have grown extensively over 

the last decade. No longer dependent on home or workplace charging, public EV charging 

infrastructure has grown with varying locations, charging network brands, and pricing. The impact 

of free charging EV usage behavior has seen limited research despite an expanding body of 

literature on electric vehicles (EVs). Research has shown that “zero cost” items and services tend 

to be perceived differently (Ariely, 2008). The zero-price-effect can be defined as a phenomenon 

in which a product becomes more desirable and its demand increases significantly when its price 

is precisely zero, contrasted to when its price is marginally higher than zero – i.e. a discontinuity 

in the price to value relationship occurs at zero price (Shampanier et al., 2007; Fruchter et al., 

2011; Nicolau et al., 2012). Although individuals tend to perceive free items as having additional 

benefit just from being free, it was found that as the price of goods and services decreases, their 

benefits tend to increase making them more attractive choice but once the good or service obtains 

a price of zero a discontinuity occurs. 
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Although extensively studied in economics and marketing, research on the zero-price effect 

in EV charging is scarce (Maness and Lin, 2019). In terms of charging related behavior, Nicholas 

and colleagues (2019) found substantial differences in charging activity between free and non-free 

workplace charging stations and concluded that there was evidence that workplace charging can 

play a larger role in the charging ecosystem of the future, especially for those without home 

charging. When analyzing results from Chakraborty et al. (2019), their model estimated a 

monetary value of free workplace charging at 0.39 ¢/kWh per charge. Past work has shown that a 

short-term free public charging program could possibly increase plug-in electric vehicle sales, 

decrease oil consumption, and decrease greenhouse gas emissions (Maness and Lin, 2019). There 

are multiple reasons for the lack of analysis on the value of free charging. As Daina (2014) 

observed in Zoepf et al. (2013) work, the charging price tends to have low variation which leads 

to difficulties in estimation. Additionally, the zero-price effect must be explicitly accounted for 

modeling charger choice and past studies have not done this (Zoepf et al. 2013, Dania 2014, Wen 

et al. 2016, Latinopoulos et al. 2017). Maness and Lin (2019) explored the possible vehicle 

ownership and greenhouse gas emissions impact of a national free EV public charging policy. 

Although they found that long-term costs could potentially reach about $40/metric ton CO2 saved 

when an $1/charge zero-price effect was assumed, their study was hampered by a lack of zero-

price effect data. 

Seeking to fill the data gap, this study establishes an early estimate of the value of free 

charging for EVs in the United States. To investigate the phenomenon of free charging and arrive 

at its monetary estimation, a stated preference survey was designed. The collected data was then 

used to estimate latent class models that assume full attribute attendance and account for attribute 

non-attendance. The remaining sections of the chapter include literature review on the zero-price 
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effect and stated preference surveys in the context of electric vehicles charging, survey design, and 

sample weighing. This is followed by methodology, results, analysis, and discussion. 

7.2 Literature Review  

7.2.1 Why a zero-price effect? 

The ‘zero price effect’ can be defined as a phenomenon in which a product becomes more 

desirable when its price is precisely zero compared to when its price is even slightly higher than 

zero. Diamond and Sanyal (1990) explained the zero-price effect as a result of prospect theory. 

They studied people’s choice of action towards supermarket discounts when a product is offered 

at a discount versus when a free item of equal value is bundled with the product. Diamond and 

Sanyal proposed that people chose the free product bundle more often because they treated it as a 

gain in the bundle (i.e. “I gained a can of soup”) whereas the discount was seen as just a reduced 

loss (i.e. “I paid less for the sauce”).  

In other work, Heyman and Ariely (2004) concluded that although people normally operate 

in a market norms mindset when shopping, when a product is offered for free, the mindset switches 

to social norms. Under the social norms mindset, they see a free offer as a gift so they believe they 

should appreciate it when someone gives them a gift. Shampanier et al. (2007) experimented with 

three additional theories for explaining the zero-price effect: transactional cost, mapping difficulty, 

and affect. In their experiments using gift cards and candies, they found support for affect as a 

compelling reason for the zero-price effect. Table 7.1 summarizes the five main proposed theories 

for the zero-price effect.  
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Table 7.1. Theorized reasons for the zero-price effect 

Reason Description Source 

Affect People based their choice on the presence of 

positive feeling when obtaining a free 

product/service 

Shampanier et al. (2007) 

Transactional 

Cost/Effort 

The cost or effort required to take part in a 

transaction is inhibitive, but the demand 

increases because free product requires no 

effort on the individual’s part to transact 

Shampanier et al. (2007) 

Mapping 

Difficulties 

Individuals’ inability to calculate the net 

benefit value 

Shampanier et al. (2007) 

Social Norms Expectations related to acceptable behavior 

when receiving gifts may cause decrease in 

demand for larger quantities of the gift 

Heyman and Ariely (2004) 

Prospect 

Theory 

Asymmetry caused by Free seen as a benefit 

whereas a discount is seen as a reduced loss 

Diamond and Sanyal (1990) 

   

7.2.2 EVs charging behavior 

The current chapter aims to translate the abovementioned ‘zero-price effect’ into the setting 

of EV charging and consumer behavior. Prior literature has addressed this topic to varying degrees 

and there have been some studies that attempted to understand the EV public charging choices.  

Although, they have not exclusively addressed the value of free charging and its impact on 

vehicle charging behavior, multiple studies have already confirmed the presence of significant 

heterogeneity in driver’s behavior and their charging choices (Franke and Krems , 2013; Yang et 

al., 2016; Zoepf et al., 2013; Sun et al., 2015; Daina et al., 2017). Literature suggests that studies 

aiming to gain more insights into the heterogeneity of the charging behavior fall into two 

categories, those that discuss heterogeneity in charging patterns (home, workplace, and public 

charging) and those that study heterogeneity in the factors that drive charging decisions (e.g., 

pricing, and behavioral patterns) (Wolbertus and Gerzon, 2018).  

There is a wide variety of factors that are being studied with regards to EV charging 

behavior. In terms of the approach to data collection, prior work has mostly used stated or revealed 
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preference methods. Some researchers used them to gain more insights into factors determining 

whether charging is initiated in the first place (i.e. Zoepf et al., 2013; Yu and MacKenzie, 2016; 

Ge and MacKenzie, 2017; Ge et al., 2018) (charging price was included as an independent variable 

in some, but not all, of the papers) while others studied its frequency and timing (i.e. Daina et al., 

2015; Sun et al., 2015). The modeling approaches also vary, however there appears to be less 

variation and the most common modeling techniques include discrete choice models such as 

multinomial logit and its extension mixed logit models (i.e. Zoepf et al., 2013; Yu and MacKenzie, 

2016; Sun et al., 2015), latent class models (Yu and MacKenzie, 2016; Wen et al. 2016; Kim et 

al., 2017) as well as extensions and variations (nested logit models as in Yang et al. (2016) or latent 

class hazard models such as in Kim et al., 2017) To study charging behavior, Daina et al. (2017) 

proposed a random utility model rooted in discrete choice analysis that is based on the theoretical 

framework of random utility (Ben-Akiva and Lerman,1985; Train, 2009). Such model assumes 

that the decision makers choose the alternative that maximizes their own utility from a set of 

mutually exclusive alternatives and a user will chose a particular alternative if all the other 

alternatives in their choice set offer a lower utility.  

To model the charging behavior response to a time-based charging fee Wen et al. (2016) 

used mixed and latent class models, in which they included the price of the charging session based 

upon a stated preference survey among EV drivers. In the latent classes they did find differences 

in price sensitivity between respondents. Latent class choice models were not only used to capture 

the unobserved heterogeneity in the data but were also a particularly useful tool in terms of dividing 

the respondents into different behavioral groups.  

Other studies analyzed the influence of pricing on more general charging behavior. 

Latinopoulos et al. (2017) looked into price in relation to charging decisions combined with 
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parking reservations. They found that EV drivers have higher willingness to pay more to ensure 

charging station availability and found a connection between free charging and general charging 

behavior. They also concluded that EV drivers that have been charging their vehicle for free were 

strongly inclined towards the safer (less risky) charging option. From somewhat a different angle, 

Wolbertus et al. (2018) found that the EV charging price and the willingness-to-pay) was 

associated, to a large degree, with time of the day, charging speed, charging time, vehicle type 

(taxi vs. for personal use), and even parking needs. Other work done by (Pan et al., 2019), in which 

the authors considered risk attributes and attribute non-attendance, indicated that charging station 

operators could modify prices to attract EV drivers and increase their charger utilization rates, as 

charging price and parking price significantly influence EV drivers’ stated charging choices. Same 

authors also concluded that the type of charging (fast or slow charging) and dwell time do not seem 

to significantly influence charging decisions.  

As mentioned in the beginning of the chapter, Chakraborty et al. (2019) estimated a 

monetary value of workplace charging and arrived at 0.39 ¢/kWh for free workplace charging of 

BEV (battery electric vehicles) and PHEV (plug-in hybrid electric vehicles) which creates an 

opportunity to investigate the zero-price effect in non-workplace settings.  

7.3 Survey Design and Methodology 

This section will describe the survey design and methodology. It begins by describing the 

probability-based internet panel used to sample US households. Then, the survey sections are 

briefly described  

7.3.1 Sample design: Probability-based internet panel 

Since this study sought to develop a national estimate of the zero-price effect, the sampling 

plan for this study used AmeriSpeak®. Funded and operated by NORC at the University of 
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Chicago, AmeriSpeak is a probability-based panel designed to be representative of the US 

household population. Randomly selected US households are sampled using area probability and 

address-based sampling, with a known, non-zero probability of selection from the NORC National 

Sample Frame. Sampled households are contacted by US mail, telephone, and field interviewers. 

The panel provides sample coverage of approximately 97% of the U.S. household population. 

Those excluded from the sample include people with P.O. Box only addresses, some addresses not 

listed in the USPS Delivery Sequence File, and some newly constructed dwellings. Households 

without conventional internet access but having web access via smartphones can participate in 

AmeriSpeak surveys by web. 

7.3.2 General survey methodology and design 

Two stated preference surveys exploring aspects of free charging were conducted between 

June and August 2020. Using a probability-based internet panel, 4,230 panelists were invited to 

participate, and 1,097 respondents chose to participate and completed the survey. Respondents 

were contacted up to four times by email with follow-up email reminders, as necessary. The 

median completion time for the survey was eleven minutes. An overview of survey design 

methodology for the whole survey is presented in Table 7.2. The survey consisted of four sections: 

Stated Choice Experiment – Charger Choice Experiment or Vehicle Choice Experiment 

Household Characteristics 

Commute characteristics 

Vehicle characteristics 

Respondents’ sociodemographics and some household characteristics were collected by NORC 

upon entrance into the panel and this information is updated annually.  
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Table 7.2. Survey design methodology 

Characteristic Description 

Timeframe July 10 – August 25, 2020  

Target population 
Civilian and non-institutionalized adults who are residents of 

United States households (18 years and older) 

Sampling frame 
NORC National Sample Frame – a two stage frame with metro 

area/county first stage and census tract/block group second stage 

Sample design Probability-based internet panel  

Sample size 4230 panelists invited 

Completed interviews 
1097 respondents total with 832 respondents completing charger 

choice experiment 

Non-response Follow-up Four reminder emails sent in July and August 2020 

Respondent Compensation $3 cash equivalent per response 

Use of interviewer Self-administered 

Mode of administration Self-administered via the internet 

Computer assistance Internet-based survey 

Reporting unit One person (aged 18 or higher) per household 

Frequency One-time response collection 

Levels of observation Individual, household 

Survey design platform Qualtrics 

 

7.3.3 Charger choice stated preference design 

The experiment begins by introducing basic definitions and terms related to EVs including 

their power source, batteries, and charging needs. This was followed by another block that 

explained the meaning of the attributes used in the experiment: charging cost, charging time, 

detour time, and amenities at charging station. The respondent was instructed of the charging 

context as follows: 

Imagine that you are on your way home from a leisure event. Your schedule is free over 

the next three hours. You are driving an electric car that can only be charged at electric 

charging stations. When you are 20 miles from home, you notice that your estimated range 

remaining is 10 miles. You will need to charge your vehicle before you get home.  

  

Because it was expected that most respondents would have no experience with driving an EV, the 

charging context chosen was done to ensure that respondents would not need to have experience 

with range anxiety and state of charge. Additionally, the long time period with a free schedule 
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ensures that respondents could reveal their preferences and tradeoffs for time and cost in an 

unconstrained context. 

In each scenario, respondents are presented with three charging locations labeled: Charger 

A, Charger B, and Charger C. Figure 1 present a sample scenario presented to respondents using 

a personal computer. Mobile users were presented with a stacked 3-table design with each 

alternative confined to a single table to minimize left-right scrolling for respondents. 

The narrative of the hypothetical scenarios was designed to overcome the challenges and 

the limitations that are encountered frequently such as, in this case, availability of public chargers 

for EVs and number of people owning a battery electric vehicle (BEV). The respondents were 

asked to assume that they were driving a battery powered electric vehicle and that they chose to 

charge their electric vehicle on a trip back home from a leisure activity. They were then asked to 

choose between three charging station locations based on varying combinations from the four 

attributes: charging cost, charging time, detour time, and amenities at station (see Table 7.2). 

The experimental design for the stated choice experiments is a modified orthogonal design. 

The initial orthogonal design was generated using NGENE. The four attributes and their attribute 

levels are presented in Table 7.2. A trial survey was administered to 99 MechanicalTurk users in 

November 2019. Scenarios were redesign when less than 5 percent of respondents chose a 

particular charger alternative. The final experimental design used is presented in Table 7.3 with 

design modification noted for each redesigned scenario. 

Table 7.3. Choice experiment attribute levels 

Attribute Attribute Levels 

Charging cost $0.00, $0.10, $0.50, $1.00, $2.00, $4.00, $5.00, $6.00 

Charging time 15 mins, 30 mins, 60 mins 

Round-trip detour time 0 mins, 20 mins 

Amenities at station Parking lot, Restaurant, Convenience store, Mall 
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Figure 7.1. An example of the charger choice experiment. 

The 24 scenarios were divided into 2 blocks of 12 scenarios each. Respondents were 

randomly assigned to one block for the choice experiment. 
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Table 7.4. Experimental design 

 Charger A Charger B Charger C   

Scenario Price Charge 

Time 

Detour 

Time 

Amenity Price Charge 

Time 

Detour 

Time 

Amenity Price Charge 

Time 

Detour 

Time 

Amenity Block Modification 

1 0 15 0 -3 1 15 20 1 2 15 0 3 2 Alt3: CT to 15 mins from 30 

2 0.5 60 0 1 0.1 60 0 -3 0 60 0 3 1 Alt2: CT to 60 mins from 30 

3 0.1 60 0 -1 6 15 0 -3 0 30 20 1 2 
Alt2: Price to $6 from $0,  

Alt3: CT to 30 mins from 60 

4 0 60 0 3 6 15 20 -3 0 30 20 -1 2 Alt2: CT to 15 mins from 60 

5 0.5 30 0 1 0 15 20 -1 0.1 30 0 -3 1 
Alt2: CT to 15 mins from 60, DT to 20 

mins from 0, cost from $0.10 to $0 

6 0.1 30 0 -3 0.1 15 20 3 6 30 20 -3 1  

7 5 15 0 -1 0 30 20 -1 6 60 20 -3 2  

8 2 30 0 3 0.5 15 20 -1 0.5 30 0 1 2  

9 6 30 0 3 2 30 0 1 5 30 0 -1 1 All Alts: CT to 30 mins from 15 

10 1 30 0 -1 0 60 0 1 0.5 15 20 -1 2 Alt2: Price from $0.50 to $0 

11 2 15 0 1 6 30 20 -3 0 30 0 -3 1 Alt3: CT to 30 mins from 15 

12 0 60 0 -3 2 60 0 -1 2 30 20 3 1 

Alt1: Price to $0 from $1,  

Alt3: Price to $2 from $0,  
Alt2: DT to 0 mins from 20 

13 0 60 20 1 4 30 20 3 2 60 20 -1 1 Alt2: Price to $4 from $0 

14 0 15 20 -3 5 15 0 1 1 30 0 -1 2 
Alt2: CT to 15 mins from 30 and DT to 0 

mins from 20 

15 0 30 20 3 1 60 0 -3 2 60 0 3 1 
Alt3: DT to 0 mins from 20, price from $5 

to $2 

16 0.5 15 20 -1 6 15 0 3 1 15 20 1 1  

17 0 30 20 -1 0 15 20 -3 5 30 20 1 1 Alt3: Price from $5 to $2 

18 0.1 15 20 3 1 30 0 -1 2 15 0 1 2  

19 5 15 0 1 0.1 30 0 1 0 15 20 3 1 

Alt3: Price to $0 from $0.10;  

Alt2: CT to 30 mins from 60, price to 

$0.10 from 0, DT to 0 mins from 20; Alt1: 
CT to 15 mins from 30 and DT to 0 mins 

from 20 

20 2 30 20 -3 5 15 20 3 0.5 60 0 1 2 
Alt2: CT to 15 mins from 60,  
Alt1: Price to $2 from $6 

21 2 60 20 -1 5 15 0 -1 1 60 0 -3 2  

22 1 30 20 3 0 60 0 3 6 15 0 3 2 
Alt1: CT to 30 mins from 60, cost to $1 

from $5 

23 0 60 0 -3 6 30 0 3 0.1 60 0 -1 1 
Alt1: Price to $0 from $6, DT to 0 mins 
from 20;  

Alt2: Cost to $6 from $2 

24 1 15 20 1 0.5 30 0 1 0 15 20 -3 2  

Note: Alt = Alternatives 
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7.4 Sample Weighting 

7.4.1 Weighting procedure summary 

The analysis of the choice experiment will use study-specific sampling weights. Firstly, 

panel base sampling weights for all sampled housing units are computed as the inverse of 

probability of selection from the NORC National Frame. These weights are adjusted to account 

for non-response and unknown eligibility and then post-stratified to external household counts 

from the Current Population Survey. These weights are applied to each eligible adult in the 

household and adjusted to account for nonresponding adults within the household. Finally, panel 

weights are raked to Current Population Survey population totals associated with age, sex, 

education, race/Hispanic ethnicity, housing tenure, telephone status, and Census Division. The 

weights adjusted to the external population totals are the final panel weights. 

Study-specific base sampling weights are derived using a combination of the final panel 

weight and the probability of selection associated with the sampled panel member. Adjustment is 

performed to account for within panel non-response and raked using the same characteristics used 

in raking the panel weights. Raking and re-raking is done during the weighting process such that 

the weighted demographic distribution of the survey respondents resembles the demographic 

distribution in the target population. 

7.4.2 Sample descriptive statistics 

The sample characteristics (weighted and unweighted) are presented in Table 7.5. 

. 

  



173 

 

Table 7.5. Sample characteristics (n=832) 

  Weighted Unweighted 

Characteristic Mean Mean 

Gender   

Male 0.48 0.48 

Female 0.52 0.52 

Age  
 

18-29 0.20 0.19 

30-44 0.26 0.35 

45-59 0.24 0.20 

60+ 0.30 0.26 

Education  
 

No HS diploma 0.10 0.06 

HS graduate or equivalent 0.28 0.16 

Some college 0.28 0.45 

BA or above 0.34 0.33 

Driven EV/ Not Driven EV  
 

Not Driven EV 0.88 0.88 

Driven EV 0.12 0.12 

Employment  
 

Employed Full Time 0.52 0.54 

Employed Part Time 0.12 0.12 

Retired 0.19 0.16 

Student (not employed for pay) 0.04 0.03 

Disabled (not employed for pay) 0.04 0.04 

Not employed for pay 0.07 0.07 

Other 0.02 0.02 

Region  
 

New England 0.05 0.05 

Mid-Atlantic 0.13 0.07 

East North Central 0.14 0.16 

West North Central 0.06 0.09 

South Atlantic 0.20 0.18 

East South Central 0.06 0.05 

West South Central 0.12 0.10 

Mountain 0.08 0.11 

Pacific 0.16 0.20 

Metro/Not Metro  
 

Metro Area 0.82 0.84 

Non-Metro Area 0.18 0.16 
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Household Size  
 

1 0.12 0.13 

2 0.32 0.30 

3 0.16 0.16 

4 0.14 0.14 

5 0.10 0.10 

6 0.16 0.17 

Household Annual Income  
 

Less than or equal to $25,000 0.19 0.24 

$25,001-$50,000 0.22 0.28 

$50,001-$100,000 0.34 0.34 

$100,001-$200,000 0.19 0.11 

More than $200,000 0.03 0.03 

 

7.5 Methodological Approach 

The modeling approach used in this study is based on random utility models. In a 

preference space, each individual n is assumed to have a deterministic utility of each charger (𝑦 ∈

{𝐴, 𝐵, 𝐶}) that takes the following general form: 

𝑉𝑛𝑖 = 𝛼𝑖 + 𝛽𝑝𝑃𝑖 + 𝛽𝑓𝐹𝑖 + 𝛽𝑐𝑡𝐶𝑇𝑖 + 𝛽𝑑𝑡𝐷𝑇𝑖 + 𝛽𝑟𝑅𝑖 + 𝛽𝑚𝑀𝑖 + 𝛽𝑐𝑠𝐶𝑆𝑖   

Where:  

• 𝛼𝑖 is an alternative-specific constant for alternative i 

• P denotes the charge price ($),  

• F is an indicator for a free charger (charge event), i.e. charge price equals $0.00,  

• CT denotes the charging time (mins),  

• DT denotes the detour time (mins),  

• R, M, SC are indicator for nearby amenities at the charge station: restaurant, mall, and 

convenience store respectively, and 

• 𝛽𝑝, 𝛽𝑓 , 𝛽𝑐𝑡, 𝛽𝑑𝑡, 𝛽𝑟 , 𝛽𝑚, 𝛽𝑐𝑠 are model parameters which are generic parameters. 
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The zero-price effect may be derived by obtaining the money value of a free charge event. 

With units of $/charge, the zero-price effect can be derived in preference space as follows: 

𝑍𝑃𝐸 =

𝜕𝐹𝑖

𝜕𝑉𝑖

𝜕𝑃𝑖

𝜕𝑉𝑖

=
𝛽𝑓

𝛽𝑝
 

Estimating the value of detour time and charge time can be done similarly. 

To arrive at the most accurate estimation of the zero-price effect, each independent variable 

was systematically tested and the final parameter values were obtained from estimations of latent 

class models. Latent class models are capable of capturing unobserved heterogeneity in the data 

and have been widely used to model similar datasets (for discussion see Greene and Hensher, 2003). 

As noted by Wolbertus and Gerzon (2018), models that assume continuous distribution of the 

preference parameters (e.g. mixed logit) are not capable of connecting the heterogeneity to 

discretely defined group of users. They also argued that latent class models were best suited for 

studying such preferences since they can provide richer insights for policy by enabling easier 

interpretation of the heterogeneity among respondents.  

Because the focus of this chapter is to estimate the willingness-to-pay in the context of 

public EV charging, only a brief description of the modeling approach is described and 

additional methodological details are available in Hensher et al. (2015) and Washington et al., 

(2020). 

Estimation of the zero-price effect and other willingness-to-pay measured are derived from 

estimating latent class models. The individuals in the sample are divided into C distinct classes 

with preferences varying across the classes. Allocating observations to specific classes allows to 

capture class-specific unobserved heterogeneity (Xiong and Mannering, 2013) without making 

distributional assumptions (as is required in traditional random parameter models). Latent class 
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models are also readily estimated with maximum likelihood procedures (see Greene and Hensher 

(2003) and Hensher et al. (2015) for details) and the log-likelihood function is formulated as: 

ln 𝐿 = ෍ ln 𝑃𝑖 = ෍ ln ቈ෍ 𝐻𝑖𝑞 ൬ෑ 𝑃𝑖𝑡|𝑞

𝑇𝑖

𝑡=1
൰

𝑄

𝑞=1
቉

𝑁

𝑖=1

𝑁

𝑖=1
 

Where 𝐻𝑖𝑞 denotes the prior probability for a class 𝑞 for individual 𝑖 and 𝑃𝑖𝑡|𝑞is the probability for 

the specific choice made by an individual 𝑖 in choice situation 𝑡 conditional on being in class 𝑞. 

This study also accounts for attribute non-attendance through a latent class formulation. 

First, an endogenous attribute attendance model was estimated with 5 potential non-attendance 

attributes (price, free price, detour time, charging time, and amenities) – i.e. 25 model. It was found 

that amenities were non-attendant in 85% of the sample, so it was decided to limit the use of 

amenities in one of the model formulations. Another endogenous attribute attendance model was 

estimated with 24 classes (amenities were not included) which showed nearly equal non-attendance 

among the remaining attributes. Then model specifications were tested and modified such that 

economic consistency and interpretation was prioritized as well as model fit. 

7.6 Modeling Results 

This section describes the results from exploratory latent class analysis with full attribute 

attendance as well as confirmatory latent class models that account for attribute non-attendance. 

All models are estimated using LatentGOLD version 5.1. The models were estimated using the 

following estimation conditions: 

• Convergence Limits – EM Tolerance: 0.01 

• Convergence Limits – Tolerance: 1e-08 

• Iteration Limits – EM: 4000 

• Iteration Limits – Newton-Raphson: 500 

• Start Values – Random Sets: 1200 
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• Start Values – Iterations: 400 

• Start Values – Tolerance 1e-05 

7.6.1 Models with full attribute attendance 

Exploratory latent-class analysis was performed. Goodness-of-fit and mean zero-price 

effect are reported in Table 7.6. From the base MNL model up to five classes, the models exhibited 

a zero-price effect across all classes. All classes exhibited economically consistent behavior as 

they each had a negative price coefficient and non-negative free price indicator. From six classes 

and up, the models generally exhibited one class with a small negative price preference which 

caused unrealistically high willingness-to-pay estimates. Additionally, some of these models also 

exhibited preference behavior where individuals experienced a disutility from a free price. Since 

these two cases disagree with economic theory, classes with estimates under two cases were 

excluded in the calculation of the mean zero-price effect shown in Table 7.6. In terms of model 

fit, the AIC is seen to increase steadily across all models. BIC acts similarly but decreases between 

11-classes and 12-classes. This study postulates that the cause of these inconsistencies is likely 

due to attribute non-attendance as the models are picking up on individuals who do not care about 

some attribute(s). 
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Table 7.6. Exploratory latent class analysis summary 

Model Log-likelihood BIC AIC Parameters Pseudo R2 Mean ZPE 

MNL -10213.69 20487.8973 20487.90 9 0.080 -$1.23 

2-class LC -9778.52 19684.7985 19684.80 19 0.165 -$1.67 

3-class LC -9521.68 19238.3456 19238.35 29 0.230 -$1.33 

4-class LC -9354.86 18971.9472 18971.95 39 0.254 -$0.91 

5-class LC -9247.77 18825.0076 18825.01 49 0.287 -$0.79 

6-class LC -9163.91 18724.5338 18724.53 59 0.305 -$0.62* 

7-class LC -9105.19 18674.3283 18674.33 69 0.319 -$0.63* 

8-class LC -9052.60 18636.3728 18636.37 79 0.334 -$0.70* 

9-class LC -8997.02 18592.4575 18592.46 89 0.343 -$0.89* 

10-class LC -8948.18 18562.0186 18562.02 99 0.347 -$1.12* 

11-class LC -8913.94 18560.7714 18560.77 109 0.354 -$1.13* 

12-class LC -8881.04 18562.2236 18562.22 119 0.359 -$0.87* 

* denotes the model contained economically inconsistent classes; the calculated class-specific ZPE value was 

set to 0 for these classes 

 

7.6.2 Attribute non-attendance without amenities 

This section describes attribute non-attendance models were estimated without amenities 

– with the best model specification shown in Table 7.7. Across all classes except for class 7, price, 

detour time, and charge time are observed to induce disutility while free charge induces positive 

utility – unless fixed to no effect. Generally, detour time exhibited greater disutility than charge 

time. This result is expected since individuals can use charge time to accomplish other tasks (e.g. 

shopping, talking, eating), while detour time is mostly constrained to only driving.  

Heterogeneity in full attribute attendance (excluding amenities) is observed across classes 

1 through 4. About 77% of respondents are estimated to exhibit full attribute attendance. A 

plurality of respondents (42%) were in class 1 with high zero-price effects ($1.93/charge) and 

below average values of time. Class 2 respondents exhibited low zero-price effects ($0.13/charge) 

and above average values of time. Class 3 respondents were observed to have a zero-price effect 

of $0.91/charge with above average valuation of detour time and low values of charging time. 
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Class 4 respondents (with a 10% class share) had large zero-price effects ($6.91/charge) and 

exhibited high values of time, with value of charging time about one-fifth larger than value of 

detour time. 

Non-attendance of free charge (Classes 5 and 8) occurs across about 15% of respondents. 

Accordingly, these respondents have no zero-price effect. Class 5 respondents (~6%) showcased 

low sensitivity to detour and charging time. Class 8 respondents have non-attendance to price, free 

price, and detour time with almost 12% of respondents observing this state. Class 6 respondents 

exhibited non-attendance to detour time and near non-attendance to charge time. Non-attendance 

for time attributes may be attributed to the leisurely nature of the scenario’s context; even in the 

longest charge event, respondents still had 100 minutes remaining before their schedule was no 

longer free. 

Non-attendance to price (class 7) was observed among about 1% of respondents. These 

respondents had strong sensitivity to free prices with a price worth over 20 minutes of charge time 

and almost 20 minutes of detour time.
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Table 7.7. Latent class non-attendance model without amenities 
 

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 

Attributes Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Price ($) -0.11 -5.16 -0.79 -4.12 -1.30 -10.19 -0.20 -1.22 -1.00 -5.35 -3.72 -2.70 -- -- -- -- 

Free Charge Indicator 0.21 2.89 0.10 0.50 1.18 2.99 1.40 1.26 -- -- 0.72 1.64 -1.08 -7.26 -- -- 

Charge Time (10-

mins) 
-0.06 -1.80 -1.27 -6.32 -0.86 -6.13 -1.74 -1.73 -0.82 -4.98 -0.02 -0.17 -0.28 -4.60 -0.55 -5.64 

Detour Time (10-

mins) 
-0.16 -3.73 -2.26 -6.58 -2.62 -7.15 -2.04 -1.79 -0.17 -0.66 -- -- 0.39 6.30 -- -- 

ASC Charger B 0.24 4.50 0.24 2.07 0.40 1.88 0.60 0.83 -0.09 -0.29 -0.65 -1.97 -3.83 -4.01 -0.05 -0.47 

ASC Charger C -0.07 -1.35 0.06 0.39 0.33 1.23 0.20 0.42 0.22 1.28 0.22 0.57 -8.00 -13.67 0.36 2.04 
 

                

Class Membership 

Model 
                

Class Probability 43.7%  15.5%  12.2%  5.8%  6.0%  4.3%  0.9%  11.6%  
                 

Willingness-to-Pay                 

Zero-Price Effect $1.93  $0.13  $0.91  $6.91  --  $0.19  --  --  

Value of Detour 

Travel Time 
$8.82  $17.12  $12.08  $60.44  $1.02  --  --  --  

Value of Charging 

Time 
$3.09  $9.61  $3.96  $51.50  $4.95  $0.03  --  --  

                 

Model Statistics 
                

Log-likelihood -9180.94 
               

AIC 18459.87 
               

BIC 18691.34 
               

McFadden R2 0.309 
               

Number of 

Observations 
9984 

               

Number of 

Individuals 
832 

               

Number of 

Parameters 
48 
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7.6.3 Attribute non-attendance with amenities 

Attribute non-attendance models were estimated with amenities as well, with the best 

model specification shown in Table 7.8. Across all classes except for class 8, price, detour time, 

and charge time are observed to have induce disutility while free charge induces positive utility. 

Heterogeneity in full attribute attendance (including amenities) is observed across classes 1 and 2 

with 20% of respondents exhibiting full attribute attendance. Class 1 respondents exhibited a low 

zero-price effect ($0.23/charge) with above average valuations of time. Class 2 respondents (~7% 

of sample) had low zero-price effects and low valuations of time (about $2 for detour time and 

$4.50 for detour time). The remaining classes include attribute non-attendance for amenities.  

Attribute non-attendance to only amenities (classes 3, 4, and 5) was observed in 61% of 

respondents. Class 3 respondents exhibited a high zero-price effect ($2.26/charge) with low 

valuations on time. A plurality of respondents was in Class 3 with 42% of respondents showing 

this preference structure. Class 4 respondents exhibited a zero-price effect of $0.88/charge with an 

average value of detour time of about $12/h. Class 5 respondents exhibited a high zero-price effect 

of $4.05 and high valuations of time (about $37 and $38 for detour and charge time respectively). 

Seven percent of respondents exhibited this preference structure. 

Attribute non-attendance to a free price and amenities behavior (class 6) was observed 

across 14% of the sample. These respondents had no zero-price effect and above average values 

of time. Attribute non-attendance to amenities, charge time, and detour time (class 7) was observed 

across 4% of the sample. These respondents exhibited a low zero-price effect ($0.24/charge) and 

thus were largely only concerned with price. Attribute non-attendance to charge time and amenities 

(class 8) was rarely observed (1% of respondents). Additionally, these respondents were observed 
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to have economically inconsistent behavior where they preferred higher prices and longer detour 

times. It is possible this class covers respondents who were inattentive to the choice tasks.



183 

 

Table 7.8. Latent class non-attendance model with amenities 
 

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 

Attributes Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Price ($) -0.22 -2.08 -1.11 -3.18 -0.09 -3.67 -1.26 -10.14 -0.25 -1.42 -0.89 -5.32 -3.90 -2.02 0.30 5.08 

Free Charge Indicator 0.05 0.33 0.14 0.34 0.19 2.58 1.12 3.22 1.01 3.10 -- -- 0.79 1.36 -0.38 -3.04 

Charge Time (10-mins) -0.37 -4.43 -0.84 -4.78 -0.05 -1.30 -0.83 -6.12 -1.54 -3.64 -1.38 -7.26 -- -- -- -- 

Detour Time (10-mins) -0.44 -2.23 -0.36 -0.92 -0.08 -2.04 -2.52 -7.47 -1.60 -3.37 -2.44 -9.27 -- -- 0.65 7.43 

Convenience Store Indicator 0.64 1.62 0.37 1.12 -- -- -- -- -- -- -- -- -- -- -- -- 

Restaurant Indicator 1.65 4.30 -0.43 -0.71 -- -- -- -- -- -- -- -- -- -- -- -- 

Shopping Mall Indicator 2.29 4.12 0.64 1.24 -- -- -- -- -- -- -- -- -- -- -- -- 

ASC Charger B 0.51 2.92 -0.13 -0.29 0.17 3.25 0.41 2.12 0.29 1.08 0.21 1.63 -0.68 -2.21 -4.09 -4.72 

ASC Charger C 0.25 1.50 0.04 0.17 -0.02 -0.43 0.34 1.50 -0.09 -0.52 0.03 0.24 0.23 0.70 -8.19 -13.75 
                 

Class Membership Model                 

Class Probability 13.4%  6.5%  41.7%  12.6%  7.1%  13.8%  4.0%  0.9%  
                 

Willingness-to-Pay                 

Zero-Price Effect $0.23  $0.12  $2.26  $0.88  $4.05  --  $0.20  --  

Value of Detour Travel 

Time 
$12.13  $1.95  $5.63  $11.97  $38.33  $16.56  $0.00  

-- 
 

Value of Charging Time $10.07  $4.51  $3.73  $3.95  $36.97  $9.38  $0.00  --  
                 

Model Statistics                 

Log-likelihood -9083.28               

AIC 18280.56               

BIC 18549.82               

McFadden R2 0.3231               

Number of Observations 9984               

Number of Individuals 832               

Number of Parameters 57               
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7.7 Zero-Price Effect Analysis 

The primary goal of this study was to present an estimate of the zero-price effect across 

adults in the US. Four estimates will be showcased in this section: 

• Lowest BIC model of exploratory latent-class analysis 

• Lowest BIC model of exploratory latent-class analysis which is economically consistent 

• Zero-price effect estimate accounting for non-attendance without amenities 

• Zero-price effect estimate accounting for non-attendance with amenities 

7.7.1 Lowest BIC model 

The model with the best BIC was the 11-class model. The mean zero-price effect for this 

model was $1.13. The distribution of the zero-price effect is heavily weighted at two locations: 

$0.00 and $2.16. The median zero-price effect was $0.27. Table 7.9 shows the nonparametric 

distribution of the zero-price effect for the lowest AIC model. 

Table 7.9. Zero-price effect distribution (best BIC) 

 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class11 

Zero-Price Effect $5.09 $2.16 $0.27 $0.22 $0.05 -- -- -- -- -- -- 

Class Probability 0.06 0.37 0.11 0.04 0.15 0.05 0.06 0.07 0.02 0.05 0.01 

-- denotes that no zero-price effect was calculated due to economic inconsistencies 

 

7.7.2 Lowest BIC and economically consistent 

The model with the lowest BIC which had all economically consistent classes was the five-

class model. The mean zero-price effect for this model was $0.79 with a median zero-price effect 

of $0.75. The distribution of the zero-price effect is heavily weighted in class 1: $1.04; this is the 

mean and mode of the distribution. Table 7.10 shows the nonparametric distribution of the zero-

price effect for the lowest BIC model. 
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Table 7.10. Zero-price effect distribution (economically consistent) 

 Class1 Class3 Class2 Class4 Class5 

Zero-Price Effect $1.04 $0.75 $0.67 $0.48 $0.39 

Class Probability 0.44 0.16 0.20 0.07 0.14 

 

7.7.3 Non-attendance without amenities 

As discussed in section 5.2, the best fitting and behaviorally sound model that excluded 

amenities was estimated and presented. For this model, the mean zero-price effect is $1.38 with a 

median zero-price effect of $0.91 (Class 3). The general shape of the distribution is decreasing 

from the median point in both directions. About 6% of people have no zero-price effect and 13% 

of respondent have an inconclusive zero-price effect (since they were price non-attendant). 

Table 7.11. Zero-Price Effect Distribution (Attribute Nonattendance without Amenities) 

 Class4 Class1 Class3 Class6 Class2 Class5 Class7 Class8 

Zero-Price Effect $6.91 $1.93 $0.91 $0.19 $0.13 -- -- -- 

Class Probability 0.06 0.44 0.12 0.04 0.15 0.06 0.12 0.01 

-- denotes that no zero-price effect was calculated due to non-attendance on the free or price attribute 

 

7.7.4 Non-attendance with amenities 

As discussed in section 5.3, the best fitting and behaviorally sound model that included 

amenities was estimated and presented. For this model, the mean zero-price effect is $1.39 with a 

median zero-price effect of $0.88 (Class 1). The general shape of the distribution is generally 

decreasing from the median point in both directions. About 14% of people have no zero-price 

effect. 

Table 7.12. Zero-Price Effect Distribution (Attribute Nonattendance with Amenities) 

 Class5 Class3 Class4 Class1 Class7 Class2 Class6 Class8 

Zero-Price Effect $4.05 $2.26 $0.88 $0.23 $0.20 $0.12 -- -- 

Class Probability 0.07 0.42 0.13 0.13 0.04 0.06 0.14 0.01 

-- denotes that no zero-price effect was calculated due to non-attendance on the free or price attribute 
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7.8 Discussion 

7.8.1 Summary 

This research explores the possibility of a free-price effect in electric vehicle charging. A 

charger choice stated preference survey was developed and distributed through a probability-based 

internet panel. Using latent class models weighted according to US population demographics, it 

was found that a substantial proportion of the population likely experiences a zero-price effect in 

regards to electric vehicle charging. The national average mean zero-price effect was estimated to 

range between about $0.90 and $1.40. There was substantial heterogeneity in this zero-price effect. 

Across the models that account for attribute non-attendance, 14% to 19% of the population is 

estimated to have no zero-price effect or an inconclusive zero-price effect. Even among the 

population with a zero-price effect, a plurality of the population has a zero-price effect around $2 

per charge. 

7.8.2 Policy Implications 

The zero-price effect is the minimum partial discount for maximizing consumer surplus. If 

the discounted price is greater than the zero-price effect, then each additional cent of discount 

confers the same benefit to the consumer. But once a discount price becomes less than the zero-

price effect, although that cent of discount still confers a cent of benefit, there is a missed 

opportunity benefit. This opportunity benefit is the difference between the zero-price effect and 

the discounted price. At this point, greater consumer surplus would be obtained by fully 

discounting the charging event since then the consumer would gain the benefit of the zero-price 

effect.  

For example, assume a zero-price effect of $1 on a $5 dollar charging event. If an entity 

discounts the charging event by $2.50, the consumer gains $2.50 in benefit. If an entity fully 
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discounts a charging event, the consumer gains $5.00 of benefit from the discount and an additional 

$1.00 of benefit from the zero-price effect. If an entity discounts that charging event by $4.50, the 

consumer gains $4.50 of discount benefit. But the consumer is missing out on that $1.00 from the 

zero-price effect which would only cost $0.50 more to obtain – an 100% return on that additional 

cost. Understanding this breakpoint, the zero-price effect size, has implications for cost-benefit 

analysis of charging pricing policies. This research provides a basis for more accurately 

performing such cost-benefit analyses of national and local infrastructure pricing policies (Maness 

and Lin, 2019). This study supports an effect size of that order of magnitude.  

Free charging may cause concerns with inefficient charging behavior. Motoaki and Shirk 

(2017) found that flat-rate fees incentivized charging station users to increase charger occupancy 

time. Particularly, with fast chargers, this creates additional inefficiency beyond capacity 

constraints since DC fast chargers have diminishing charge rates over time.  

7.8.3 Sample, Modeling, and Experiment Limitations 

The sample collected exhibits some limitations on the practical implications of the zero-

price effect estimate. The study assumes that all American adults could charge EVs which is likely 

not the case, at least not in the medium term. This suggests that studying the demographics of the 

different classes could be helpful. By understanding the likelihood of each class to purchase an 

EV, a zero-price effect estimate weighted by EV purchase likelihood could be obtained. This 

measure would likely be more relevant for understanding the benefits of such a policy when EV 

penetration rates are low. As the penetration rate rises, this “self-selected zero-price effect” would 

converge towards the general population zero-price effect. Additionally, there may be some timing 

effects associated with the survey collection time. Occurring during an economic downturn, the 

temporal stability of the measured zero-price effect is uncertain. 
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Modeling limitations involved the choice model structures. Although a mixed logit form 

could potentially be more parsimonious, a latent class approach is more non-parametric accounting 

for prior uncertainty about the distribution of a free-price effect. Additionally, the mixed logit 

formulation has difficulties dealing with attribute non-attendance. Attribute non-attendance leads 

to distributions more strongly tilted towards low zero-price effect values. Creating a “zero-

inflated” form with continuous distributions is difficult to obtain. Future work could attempt to 

estimate latent class mixed logit formulations which could reduce the number of attendant classes. 

This study did not include sociodemographics in the model specifications. This was chosen 

due to the study’s focus on policy and measurement rather than behavioral explanation. For early 

analysis of free charging policies and pricing structures, the cost-effectiveness of the policy is a 

greater focus than the exact structure of the policy, so a looser mean-focus and distribution-focused 

approach brings greater value. Future work can look at the demographic characteristics of the 

preference classes. This allows for tailoring the policies and business plan around groups that may 

see greater benefit from the program or groups most likely to use chargers from companies that 

offer free charging in some form. Understanding the demographic also may have implication for 

equity analysis as disparities were observed in the value of time between different classes. Since 

value of time is seen as partially determined by wage rate, understanding the characteristics of 

these group may be important for creating more equitable public charging infrastructure. 

The analysis has been written such that attribute non-attendance is a population-level trait. 

This is rather difficult to disentangle true attribute non-attendance from experiment-level attribute 

non-attendance in a stated-preference study. As hypothetical bias decreases, the observed non-

attendance should move closely match true non-attendance. 
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The limitations of the choice experiment relate to the choice context, hypothetical bias, and 

the presence of other relevant attributes. The choice context present is low pressure and with no 

time constraint. This helps to explains the low values of time observed as respondents did not have 

to balance the prospects of being late or reduced time at a follow up activity with price. Under a 

choice context with time constraint, a different zero-price effect distribution would be expected. 

Future work will look to change the context of the choice scenarios to create a fuller understanding 

of the impact of free prices on charging behavior. The prospect of hypothetical bias is always 

present in stated choice experiments and this analysis is limited by individuals’ limited experience 

with electric vehicle charging. The value of times obtained aid in understanding possible 

hypothetical bias and individuals did exhibit expected time valuations (lower values-of-time due 

to the lack of time constraints/leisure activity context and charging time exhibiting lower valuation 

than travel time). Additionally, other attributes could be relevant to the choice of charger location. 

Charger type was excluded due to expected unfamiliarity with charging technology. Since charger 

type mostly impacts charging rate, charging time was included rather than type. State of charge 

after the charging is rather important in a charging event. The researchers decided that 

simplification of the task was more important, as different respondents would interpret the 

importance/needs for charge differently and this would be more difficult to clearly differentiate in 

the modeling task. 
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Chapter 8 
 

A Multi-City Investigation of the Effect of Holidays on 

Bikeshare System Ridership 
 

Trang Loung, Michael Maness 

8.1. Introduction 

Bikeshare provides important first mile last mile, commuting, circulation, and sightseeing 

options in many cities. In 2018, there are 67 U.S. cities with bikeshare systems consisting of 45.5 

million bikeshare trips—80% of these trips are station based and 20% are floating. In the U.S. in 

2018 there were a total of 57,000 station-based bikes available (NACTO, 2019). Bikeshare can 

also be healthy and convenient for users. Bikeshare ridership includes both leisure and work-

related trips. It is important and useful to gain insights into how and why travelers choose 

bikeshare—this is valuable for planning and for network design and operations (e.g. for pre- and 

re-positioning of the bikes). There is substantial research on characteristics of bikeshare commute 

trips, but there is limited research on leisure-based trips during weekends, holidays, and special 

events. During a typical year there are 10 federal holidays, accounting for 3% of all calendar days. 

For example, in 2018 in Washington, D.C.’s Capital Bikeshare system there are approximately 68 

thousand trips taken during federal holidays that account for about 2% of all trips. These types of 

days are interesting for analysis because they are when users characteristically change their daily 

routines and alter their typical bikeshare behavior.  

Past investigations of the impacts of holidays on bikeshare usage show disparate results 

due to differences in holiday definitions, user composition across systems, and modeling 

specifications. Past studies found a range of directional effects of the combined weekend and 

holiday indicator variables including increased (El-Assi et al., 2015, Corcoran et al., 2014) and 
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decreased ridership (Mattson and Godavarthy, 2017; Sun et al., 2018; Gebhart and Noland, 2014). 

Although research has found that subscribing members and non-members exhibit different 

bikeshare usage behavior (Sun et al., 2018; Wang and Lindsey, 2019; Zhou, 2015), no studies have 

analyzed holiday impact by user type. This study identifies the following four gaps in 

understanding bikeshare usage behavior during holidays:  

1. Holidays are defined differently across studies. Different scales of holidays, including 

federal holidays (Gebhart and Noland, 2014), public holidays (Corcoran et al., 2014; Kim, 

2018), school holidays (Corcoran et al., 2014; Mattson and Godavarthy, 2017; Kim 2018), 

and local holidays (Kaltenbrunner et al., 2010) give different effects on bikeshare usage 

resulting in incomparable results. 

2. Existing studies neglect to account for user’s heterogeneity in system-level ridership 

patterns on holidays. Member and non-members have different usage profiles, which likely 

leads to different holiday ridership. But, looking at just total ridership obscures this 

relationship. 

3. Are there differences between holidays and weekend ridership patterns? Federal holidays 

and weekends share some similar effects due to them both being non-workdays. It was 

found that no past studies have clearly answered this question. 

4. Are there differences in ridership patterns between individual holidays? Holiday traditions 

have differing social and recreational activity space and preference profiles. But no 

previous research on daily bikeshare ridership has analyzed the effects of holidays 

individually.  
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To better understand these four gaps, this study analyzes daily ridership patterns across 

five U.S. bikeshare systems in Washington D.C., Chicago, Boston, Minneapolis, and Los Angeles. 

To address the first gap, this study defines holidays as federal and non-work holidays across five 

systems. By conducting a multi-city analysis with clearly defined and consistent holidays, general 

ridership patterns on the same types of holidays can be drawn from the results. For the second gap, 

to address all user types, the effects of holidays on member and non-member ridership are 

considered separately rather than addressing only total ridership. This could explain the impact of 

who is using the bikeshare system on holidays. To understand gap three, this study found support 

that ridership behavior varies between holidays and weekends. For gap four, this study found 

differences between different holiday ridership patterns. For example, Thanksgiving and 

Christmas result in less total ridership than Labor Day and Memorial Day. 

 

8.2 Literature Review 

In past investigations of bikeshare use in the U.S. and abroad, there have been some 

disparities in holiday bikeshare use across different systems. Holidays occur on weekdays and 

weekends, but the approach as to how to define them in the econometric model differs amongst 

studies. 

Some prior bikeshare studies have distinguished between weekend and weekday variables 

in their econometric models to account for calendar days. In Montreal, for example, Faghih-Imani 

et al. (2014) found that weekends had a negative effect on arrival and departure rates, along with 

Zhou (2015) who found that weekend ridership was much lower than weekday ridership in 

Chicago. Conversely, Hyland et al. (2018) found that both weekends and weekdays had positive 

effects on total trip counts in Chicago. In Washington D.C., Younes et al. (2020) incorporated 
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separate day of the week fixed effects. Relative to Sunday, their models revealed that Monday had 

fewer trips; Tuesday through Thursday had similar trips; and Friday and Saturday had more trips. 

Further, a study discovered that Friday evening trip counts were like Saturday counts, which 

indicates that Friday evenings are similar to weekend days, and therefore Fridays can exhibit 

ridership patterns like a weekday and a weekend day in different cities (Faghih-Imani et al., 2014). 

Whether the user is a subscribing member or non-member of the bikeshare system can also 

impact the ridership results on different calendar days. Typically, bikeshare members have annual 

or monthly passes while non-members have single day passes. Wang et al. (2019) found that 

annual members took fewer bikeshare trips on weekends in St. Paul, Minnesota. Likewise, Sun et 

al. (2018) found that on weekends in Seattle, member ridership declined while non-member 

ridership increased. Zhou (2015) observed that member users were more commute-oriented and 

non-member users were more recreational oriented. This could explain why past analyses found 

weekend ridership to be lower for members who were not working/commuting and higher for 

casual non-members since special events and leisure may attract locals and tourists to bikeshare 

on weekends. Analyzing trips made by members and non-members separately can provide more 

information in a model on the types of riders utilizing the system on different calendar days.  

A limitation in the above studies is that they did not include holiday indicator variables in 

their econometric models. For example, missing holiday variables could result in omitted variable 

bias and unobserved heterogeneity issues, as not incorporating any form of a holiday variable could 

make it unclear whether the magnitude and direction of the weekend and weekday parameter 

estimates are caused by the weekend and weekday itself or caused by the unobserved effects of 

the holidays.  
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There is limited consensus, however, on how to incorporate holidays in the analysis of 

calendar day effects. This occurs across two factors: 

• What is defined as a holiday? 

• How are holidays incorporated into the model? 

Across the studies reviewed, the definition of a holiday varies. Cultural differences can 

play a role in the definition of holidays. Across studies internationally, Kim (2018)  in Daejeon, 

South Korea, and Corcoran et al. (2014)  in Brisbane, Australia looked at public and school 

holidays, Kaltenbrunner et al. (2010)  in Barcelona included local holidays, El-Assi et al. (2015)  

in Toronto statutory holidays and Zhang et al. (2017)  in Zhongshan, China undefined holidays. 

Undefined holidays are when studies use a holiday variable in the analysis, but do not specify what 

holidays are being analyzed. Across studies in the U.S. alone, one used school holidays in Fargo, 

North Dakota (Mattson and Godavarthy, 2017), one used national holidays (Sun et al., 2018), one 

used federal holidays in Washington D.C. (Gebhart and Noland, 2014), and two used undefined 

holidays (Wang and Lindsey, 2019; Younes et al., 2020). 

Past studies found a range of directional effects of the combined weekend and holiday 

indicator variables. To account for unobserved heterogeneity due to holidays, a common approach 

is to combine holidays with weekends into a single fixed effect. Across models with weekend-

holiday fixed effects, decreased bikeshare ridership was observed for school holidays (Mattson 

and Godvarthy, 2017), national holidays (Sun et al., 2018), and federal holidays (Gebhart and 

Noland, 2014). In one study, increased ridership occurred on statutory holidays (El-Assi et al., 

2015). Corcoran et al. (2014) also found that weather (ambient temperature) was associated with 

increased ridership on public holidays and weekends as compared to weekdays. Using shared 
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variables in a model indicates that the modeler assumes the effects of weekends and holidays are 

mutual.  

To distinguish between weekends and holidays, some studies grouped holidays into a 

binary variable separate from the weekend variable. Kim (2018) found that public holidays had a 

negative effect on system-hour-daily ridership, but Corcoran et al. (2014) found that public 

holidays wielded a positive effect on total system ridership. A commonality in the literature is that 

school holidays exerted no significance on ridership; this is often attributed to age restrictions on 

bikeshare membership (Corcoran et al., 2014; Kim, 2018). Younes et al. (2020) and Zhang et al. 

(2017) included a holiday indicator variable, but they did not specify in the analysis which holidays 

were included. Both found that holidays induced no effect on both member and non-member trips.  

The impact on ridership appears to change based on how holidays are classified and 

grouped. While separating the holiday and weekend indicator variables may strengthen the 

accuracy of the results, failure to ungroup the holidays based on the holiday (Christmas, Veterans 

Day, Labor Day, etc.) could mask the actual effects of each individual day. There is a lack of 

research regarding ungrouping holidays, but it may not always be feasible in some analyses due to 

the time frame of the study. For example, Zhang et al. (2017) had a grouped holiday variable in 

their model, but the study only occurred over a four-month period. None of the studies reviewed 

had more than two years of data, which makes the inference of separate holiday effects difficult 

since there is limited or no replication of individual holidays in the analysis. 

As these studies evaluated the factors that influenced bikeshare ridership that change based 

on weekdays, weekends, and holidays, very few studies incorporate special events in their model 

local to the bikeshare system analyzed. In Washington D.C., Younes et al. (2020) found that the 

annual Cherry Blossom Festival had a substantial positive impact on all trips. Many users utilized 
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the bikeshare system to participate in the activities at the Cherry Blossom Festival. Kaltenbrunner 

et al. (2010) found that on a local holiday, the Feast of Sant Joan, Barcelona’s bikeshare system 

exhibited ridership patterns more like a typical Sunday although the holiday occurred on a Tuesday 

that year. Therefore, different holidays and special events may cause changes in bikeshare decision 

making. Table 8.1 summarizes the holiday and special event variables from the literature review 

in a table with the corresponding directional effects.
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Table 8.1 Literature review table – holidays and special events 

Author Model Location Time 

Period 

Dependent Variable Independent 

Variable (relevant 

to this study) 

Directional Effect 

Corcoran et al. 

 

Poisson Regression 

Model 

Brisbane, 

Australia 

Nov. 2010 

to Jul. 

2012 

Total Trips (log) Public Holiday, 

School Holiday, 

Weekend 

No effect on public or school 

holidays 

 

El-Assi et al.  Weekday and/Weekend 

Distributed Lag Model; 

Multi-Level Mixed-

Effects Regression 

Model 

Toronto, 

Canada 

2013 Natural Logarithm of the 

Trip Counts 

Statutory Holidays 

and Weekends, 

Weekday 

Increased ridership occurred 

on statutory holidays 

Faghih-Imani et 

al.  

Multilevel Linear Mixed 

Model 

Montreal, 

Canada 

Apr. to 

Aug. 2012 

Arrivals or Departures at a 

Station 

Weekends, 

Weekdays, Friday, 

and Saturday Nights 

Bicycle usage decreased 

during weekends in Montreal, 

but increased on Friday and 

Saturday Nights 

 

Gebhart and 

Noland  

Negative Binomial 

Model 

Washington 

D.C. 

Oct. 1, 

2010, to 

Dec. 31, 

2011 

Trips per Hour Weekends and 

Federal Holidays, 

Month Year 

Usage on weekends and 

holidays is not significantly 

different than on weekdays 

Hyland et al.  Multilevel Mixed-Effect 

Regression Model- 

Hybrid Cluster-

Regression Approach 

Chicago, 

Illinois 

2016 Log (Trip Count) Dec. 2016, Weekdays 

in Month, Weekend 

Days in Month, 

Month 

Weekends and weekdays had 

positive effects on total trip 

counts in Chicago 

Mattson and 

Godavarthy 

Regression Model Fargo, North 

Dakota 

2015 and 

2016 

Ridership (log) Weekend or Holiday, 

Year 

Negative effect for weekend or 

holidays 

 

Kaltenbrunner 

et al.  

Auto-Regressive 

Moving Average 

(ARMA) Model 

Barcelona, 

Spain 

May 15, 

2008, to 

Jul. 3, 

2008 

Number of Bicycles 

Available  

Time of Day, Day of 

Week, Local Holiday 

Feast of Sant Joan has bicycle 

patterns more like a typical 

Sunday 

Kim Negative Binomial 

Regression Model 

Daejeon, South 

Korea 

2015 Number of Bicycle Rentals Weekend, Public 

Holidays, School 

Holidays 

Negative effect on public 

holidays; School holidays do 

not have a significant impact 

on bikeshare usage 
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Sun et al.  Generalized Additive 

Mixed Model (GAMM) 

Seattle, 

Washington  

Oct. 15, 

2014, to 

Aug. 31, 

2016 

Total Counts of Pickups and 

Returns 

Workday, National 

Holiday and 

Weekend  

Non-working days are 

negatively correlated with 

member pickups but positively 

correlated with short-term pass 

holder pickups 

 

Wang et al. Linear Mixed-Effects 

Models and 

Multinomial Logistic 

Models 

Minneapolis-St. 

Paul, Minnesota  

2017 Average Daily Trip 

Frequency, Average Daily 

Trip Frequency on 

Weekends, Average Daily 

Trip Frequency on 

Weekdays 

Weekends and 

Holidays 

Annual members took fewer 

bikeshare trips on weekends in 

St. Paul, Minnesota 

Zhou Hierarchical Clustering 

Method 

Chicago, 

Illinois 

Jul. to Dec. 

2013; Jul. 

to Dec. 

2014 

Total Over-Demand 

Numbers for Docks and 

Bikes  

Time of Day, Day of 

Week, Subscribers 

vs. Customers 

Weekend usage was much less 

than on weekdays 

Younes et al. Negative Binomial 

Regression, Log-Linear 

OLS Regression 

Washington, 

D.C. 

Dec. 2018 

to Jun. 

2019 

Number of Trips per Hour, 

Medium Duration of Trips 

per Hour 

Cherry Blossom 

Festival, Government 

Shutdown, Day of 

Week 

Holidays had a positive effect 

on casual bikeshare trips and 

fewer member trips; 

The Cherry Blossom Festival 

had a significant positive 

impact on all types of bike 

share trip activities 

Zhang et al.  Multiple Linear 

Regression Models 

Zhongshan, 

China 

Feb. to 

Jun. 2014 

Ln[D/S] of Weekdays, 

Weekends, and Holidays 

Weekdays, 

Weekends and 

Holidays 

Negative impact on daily D/S 

at stations on weekdays and no 

influence on weekends and 

holidays 
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8.3 Hypothesis Testing 

This study proposes to answer the research question: Why does existing literature have 

disparities amongst different bikeshare system-level ridership results on holidays? The following 

hypotheses will suggest possible explanations as to why these disparities occur between holidays 

across different systems and why there is no clear effects on bikeshare usage. The hypotheses are 

classified into three ridership types for holidays: Member (HM), Non-member (HN) and Total 

(HT).  

 

8.3.1 Grouped non-work holidays effects 

Since members can be more likely to use bikeshare for commuting, it is expected that 

member users would use bikeshare less during their non-workdays, such as federal holidays, and 

weekends.  

HM1. Federal holidays exhibit lower member ridership compared to non-holidays.  

HM2. Federal holidays have similar member ridership with weekend days. 

 

In contrast with member users, non-member users are assumed to generally use bikeshare 

for mostly leisure-based trips. Since non-workdays increase the time available for leisure, non-

member trips are assumed to increase during non-work holidays. 

HN1. Federal holidays exhibit greater non-member ridership compared to non-holidays. 

HN2. Federal holidays have greater non-member ridership than a weekend day. 

 

Similarly, variations in holiday observance likely will impact ridership levels on non-work 

holidays. It is expected that as holiday observance increases member-level ridership would 
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decrease because of fewer commuting trips. Simultaneously, non-member ridership would 

increase because of increased leisure. 

HM3. Non-work holidays with higher levels of observance have fewer member trips than 

holidays with lower levels of observance. 

HN3. Non-work holidays with higher levels of observance have more non-member trips 

than holidays with lower levels of observance. 

 

8.3.2 Holidays-specific effects 

It is expected that different federal holidays could have dissimilar effects across systems. 

Hence, this hypothesis is built for testing whether each individual federal holiday has a different 

effect on total ridership. 

HT1. Ridership levels vary across specific federal holidays.  

 

When federal holidays fall on a weekend day, most often the holiday is observed on the 

Friday before or the Monday after. Therefore, users may have a three-day weekend and therefore 

may be more likely to engage in outdoor or leisure activities and utilize bikeshare. 

HT2. Federal holiday on the weekend induces higher ridership compared to the same 

federal holiday on a weekday. 

 

8.3.3 Cherry blossom festival effects 

The Cherry Blossom Festival in Washington, D.C. is in an area away from public transit, 

across a large outdoor space and attracts international and regional tourism. This could cause non-
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member ridership to rise due to the transient nature of the riders. It assumes that non-members are 

typically tourists or infrequent users. 

HN4. The Cherry Blossom Festival in Washington D.C. attracts significant tourism which 

induces higher ridership for non-members.  

 

8.4 Data Description 

Five station-based bikeshare systems were selected as case studies in this analysis: Capital 

Bikeshare (Washington, D.C.), Bluebike (Boston), Divvy (Chicago), Nice Ride (Minneapolis) and 

Metro Bikeshare (Los Angeles). In 2018, these systems account for approximately 13,800 station-

based bikes (nearly 24% of the total in the U.S.) and 9.5 million total trips (nearly 26% of total in 

U.S.) (NACTO, 2019). To maintain consistency in the estimation results, the first three systems 

were selected because of their similarities in system size and weather characteristics. Looking at 

Nice Ride and Metro Bikeshare with unique characteristics may help explain the analysis as it can 

see whether system disparities affect holiday ridership. Nice Ride is somewhat unique as it closes 

its operations in the winter, so it does not account for the winter holidays in Minneapolis. Also, 

member and non-member trips have an almost even distribution in ridership, while members 

dominate bikeshare culture in the other studied systems (Table 8.2) – thus increasing variation in 

the membership ratio distribution across the systems studied. This increases the robustness of the 

study’s findings in helping to differentiating total ridership effect versus membership effects. To 

control for possible seasonal variations in the outdoor leisure activity space, Metro Bikeshare in 

Los Angeles was included due to its subtropical climate to increase the robustness of the hypothesis 

testing for the holiday-specific effects. 
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Table 8.2 Summary of bikeshare systems  

City, State System Year Total Trips Member Trips 
Non-Member 

Trips 

Washington, D.C. Capital Bikeshare 2012-2019 24,716,073 19,620,321 5,095,752 

Chicago, IL Divvy 2015-2019 18,028,625 13,845,616 4,183,009 

Boston, MA Bluebike 2015-2019 7,883,904 6,211,713 1,672,191 

Minneapolis, MN Nice Ride 2012-2019 3,150,889 1,677,022 1,473,867 

Los Angeles, CA Metro Bikeshare 2017-2019 783,733 526,569 257,164 

 

Daily ridership data was compiled for each system using disaggregate trip data from each 

system’s respective websites (Capital Bikeshare, 2020; Bluebikes, 2020; Nice Ride, 2020; Metro 

Bikeshare, 2020; Divvy 2020). The individual trip information from each system included: start 

and end time, origin and destination station, and user type (member or non-member). Depending 

on system inception dates, the systems were analyzed over different time periods. Additionally, 

the data at the beginning of each system will be excluded in this study to avoid instability of the 

systems during their growing phases. Furthermore, the trips whose user types were unknown were 

left out of the data. Table 8.2 presents the summary of all five systems in this chapter. Data was 

removed in each system near the beginning of the system’s existence. This was to account for how 

system demand is low and highly variable upon system introduction. The authors did not think that 

the system ridership demand generation process was similar enough to include in a single model. 

The removed data is listed as follows:  

• Capital Bikeshare: Removal of 2011 data. 

• Divvy: Removal of 2013 and 2014 data.  

• Bluebike: Excluded data from the first four months of 2015. 

• Nice Ride: Excluded data from 2010 and 2011.  
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• Metro Bikeshare: Excluded data from the first four months of operation in 2017. 

• Excluded observations with unknown user types. 

 

The individual trip data of each system later was aggregated into daily trip count data with 

the start of the day occurring at 4:00 am of the calendar day and ending at 3:59 am the following 

day. This daily bikeshare trip data was also categorized into daily member and non-member trip 

counts. The purpose of changing the start of day from midnight to 4:00 am is to capture late night 

bikeshare trips in the systems. Finally, the weather data was obtained from the National Oceanic 

and Atmospheric Administration (2020) and Weather Underground websites (2020). Since the 

weather at an airport is similar to the weather of the city, weather data from each city’s closest 

international airport weather station was collected for this study. The weather data used in this 

analysis included daily maximum temperature, average wind speed, maximum dewpoint, snowfall, 

snow depth and precipitation in inches.  

In order to help visualize the variation of bikeshare ridership throughout a calendar year, 

the calendar heatmap in Figure 1 shows the difference between the actual number of non-member 

bikeshare trips on a specific day and the mean non-member trips of 14 days around that day in 

Washington D.C. The mean trips were calculated by using a centered moving average with a 14-

day time window. By looking at this calendar, one would see whether the actual non-member 

bikeshare trips are above or below the average non-member trips of 14 days around that day. It 

appears that 14 days is a reasonable span length as it can help standardize the effects of holidays 

and unusual weather conditions. The non-member ridership was generally higher on weekends 

than weekdays. The non-member ridership remained similar or decreased on weekdays. The 

heatmap generally shows that federal holidays on weekend had higher non-member ridership than 
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the same federal holidays on weekday such as New Year’s Day, Christmas Day, Independence 

Day, and Veterans Day.  

In Figure 1, the Cherry Blossom Festival on Saturday generally show high levels of non-

member ridership. For Washington D.C., approximately from the third week of March to the 

second week in April, Capital Bikeshare participates in the National Cherry Blossom Festival by 

offering the corral service. This service encourages event attendees by guaranteeing a space to 

dock. In 2018, the average daily trips during the Cherry Blossom Festival was 11.5% higher than 

average annual daily trips. Since the Cherry Blossom Festival is extended over a long period of 

time and is in the outdoor activity space, it is expected that this event could significantly affect the 

bikeshare usage in Washington D.C.. This park-based events may increase ridership due to users 

possibly associating parks with bicycling. The primary area for the Cherry Blossom Festival 

(around the Tidal Basin) is serviced by only two metro stations with significant egress distances 

(over 0.5 miles). Additionally, the festival has three trail loops for viewing with distances varying 

from 2.1 to 4.1 miles. This makes bikeshare a significantly viable mode of transportation for this 

event. 
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Figure 8.1 Capital Bikeshare calendar heatmap for non-member ridership – log (ratio of daily non-member ridership to 14 day moving 

average non-member ridership) 
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8.5 Methodology 

This study consists of a multi-city investigation of the effect of holidays on system-level 

bikeshare ridership in five U.S. cities using a log-linear regression with robust standard errors 

model. A log-linear regression model resulted in more normally distributed error terms because 

the system grows over time and has high seasonal variation. Also, this allows the coefficients to 

be compared across systems because the estimated coefficients show the percent increase or 

decrease for every one-unit increase in the independent variable. To account for additional 

heteroscedasticity, the Eicher-Huber-White robust standard errors are reported. The general model 

specification formula is presented in (8.1): 

𝑙𝑜𝑔(𝑇𝑟𝑖𝑝𝑠) = 𝛽0 + 𝛽H(𝐻𝑜𝑙𝑖𝑑𝑎𝑦) + 𝛽F(𝐶ℎ𝑒𝑟𝑟𝑦𝐵𝑙𝑜𝑠𝑠𝑜𝑚) + 𝛽T(𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙) + 𝛽W(𝑊𝑒𝑎𝑡ℎ𝑒𝑟)   (8.1) 

Where 𝛽0, 𝛽H, 𝛽F,  𝛽T, 𝑎𝑛𝑑 𝛽W are estimated coefficients regarding the constant, holidays, the 

Cherry Blossom Festival, temporal fixed effects, and weather, respectively.  

 

Yearly fixed effects were included to account for changes in the supply of bikes and 

stations along with the familiarity and demand of the system. Monthly fixed effects were used to 

account for seasonal variation. The reference variables were the first year of the study period for 

yearly fixed effects, and July for monthly fixed effects. Variations in ridership over the week were 

accounted for with daily fixed effects with Wednesday serving as the reference day.  

For testing hypotheses, five different model specifications were estimated for total, 

member, and non-member ridership in each system (with the corresponding hypotheses tested in 

parentheses).  

• Federal holidays grouped plus weekend variable (HM1, HM2, HN1, HN2) 
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• Federal holidays grouped and Saturday and Sunday separately (HT1 - restricted 

model) 

• Federal holiday-specific Effects (HT1 - unrestricted model) 

• Non-work holidays grouped by Business Closure Rate (HM3, HN3) 

• Holiday-specific Effects (HT2, HN4) 

 

To test the significance of the hypotheses, either an unpaired one-sided t-test, unpaired 

two-sided t-test of the equality of coefficients, or a likelihood ratio test was conducted using the 

coefficients of the inferential models. 

The levels of observance for non-work holidays were obtained from the Society for Human 

Resource Management which forecasted the percentage of U.S. businesses closed by holiday in 

2015 (SHRM, 2014). Based on these percentages, non-work holidays were grouped ordinally by 

observance into three categories from high to low observance for testing hypotheses HN3 and 

HM3: 

• High observance non-work holidays: New Year’s Day (95%), Memorial Day (94%), Labor 

Day (95%), Thanksgiving (97%) and Christmas (97%). 

• Medium observance non-work holidays: Independence Day (76%), Black Friday (76%), 

and Christmas Eve (47%) 

• Low observance non-work holidays: Birthday of Martin Luther King (37% of businesses 

closed), Washington’s Birthday (35%), Good Friday (28%), Columbus Day (16%), 

Veterans Day (20%), and New Year’s Eve (23%)  
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For the holiday-specific effects models, all the holidays listed above were included 

individually. Fixed effects were added for each holiday on its corresponding day of the year the 

holiday falls on to account for the ridership impact of that holiday. For federal holidays which can 

occur on a weekend day, an additional fixed effect was added for its official day of federal 

observance. Additionally, when a federal holiday fell on a weekend day, a fixed effect was added 

to account for differences in ridership compared to when the respective holiday occurs during a 

weekday. 

Weather conditions were controlled in the model structure with temperature and 

precipitation modeled non-linearly. For example, bikeshare ridership is expected to increase with 

temperature (Eren and Uz, 2020), however ridership may drop above a threshold due to excess 

heat.  

 

8.6 Analysis – Hypothesis Tests 

All hypotheses in this study are tested at a 95% confidence interval across all five systems. 

The results of the hypothesis testing are summarized in Table 8.3. 

Table 8.3 Hypothesis test results 

Hypothesis Test 
Alternative 

Hypothesis 

Capital 

Bikeshare 
Divvy Bluebike Nice Ride 

Metro 

Bikeshare 

Non-work holidays effects 

HM1  
One-sided 

t-test 

Grouped 

federal 

holidays < 0 

-11.699* -8.989* -8.537* -5.505* -6.880* 

HM2  

Two-sided 

t-test of the 

equality of 

two 

coefficients 

Grouped 

federal 

holidays   

Weekend 

-4.922* -1.228 -1.463 0.181  -0.478 

HN1  
One-sided 

t-test 

Grouped 

federal 

holidays > 0 

14.717* 7.121* 0.105 6.126* 4.888* 

HN2  

One-sided 

t-test of the 

equality of 

Grouped 

federal 
-3.26 -3.998 -2.332 -2.141 -0.925 
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two 

coefficients 

holidays > 

Weekend 

HM3 

One-sided 

t-test of the 

equality of 

two 

coefficients 

High Non-

work < 

Medium non-

work 

-3.331* -2.653* -0.744 -1.893* -2.019* 

Medium non-

work < Low 

non-work 

-7.128* -6.853* -5.210* -3.354* -2.798* 

HN3 

One-sided 

t-test of the 

equality of 

two 

coefficients 

High Non-

work > 

Medium non-

work 

0.532 1.923* 0.046 0.297 2.086* 

Medium non-

work > Low 

non-work 

-0.167 0.253 -1.875 1.801* -0.309 

Holiday-specific effects 

HT1 
Likelihood 

ratio test 

Separate 

federal 

holidays  

Grouped 

federal 

holidays 

2 = 288.6*  

DF = 13 

2 = 229.9*  

DF = 13 

2 = 93.9*  

DF = 13 

2 = 50.2*  

DF = 7 

2 = 17.4  

DF = 10 

HT2 
One-sided 

t-test 

New Year’s 

Day on 

weekend > 

New Year’s 

Day on 

weekday 

6.717* 8.437* 3.945* - - 

Christmas 

Day on 

weekend > 

Christmas 

Day on 

weekday 

12.082* 5.274* 6.157* - - 

Independence 

Day on 

weekend > 

Independence 

Day on 

weekday 

2.232* 4.482* 3.400* -1.812 - 

Veterans Day 

on weekend > 

Veterans Day 

on weekday 

0.765 -0.169 0.171 -4.160 0.375 

Cherry Blossom Festival effects 

HN4 
One-sided 

t-test 

Cherry 

Blossom 

Saturday > 0 

3.551* - - - - 

Cherry 

Blossom 

weekday > 0 

3.681* - - - - 

* indicates a p-value <= 0.05 

- denotes that a test was not performed for the corresponding test and system 
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8.6.1 Grouped non-work holidays effects 

Hypothesis HM1  

The results of the one-sided t-tests supports this hypothesis that federal holidays induce 

lower member ridership versus a non-holiday across all five systems. 

Hypothesis HM2 

The results of two-sided t-test mostly supports the hypothesis that federal holidays and 

weekends have similar member ridership in four out of five systems. Capital Bikeshare 

experienced significantly lower member-level ridership on federal holidays compared to 

weekends. 

Hypothesis HN1  

The one-sided t-test results supports this hypothesis that federal holidays have higher 

ridership for non-members in all cities except Boston. Therefore, it could be roughly concluded 

the effects of federal holidays and non-holiday days are equivalent in Boston. 

Hypothesis HN2 

The results of the one-sided t-test does not support this hypothesis. It was found that federal 

holidays induce lower non-member ridership than a weekend day, which is opposite to this 

hypothesis. Therefore, the results from this hypothesis are not statistically significant with a p-

value greater than 0.05 shown in Table 8.3. 

Hypothesis HM3 

The results of the one-sided t-test supports the hypothesis that the number of member trips 

decreases proportionally to the levels of observance for non-work holidays in all systems except 

in Boston. This means there are no statistically significant differences between the effects of 

different levels of observance non-works holidays on member ridership in Boston. 
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Hypothesis HN3  

After conducting a one-sided t-test, the results do not support the hypothesis that the 

number of non-member trips increases proportionally to levels of observance for non-work 

holidays in all systems. This means there are no statistically significant differences between the 

effects of different levels of observance non-works holidays on non-member ridership in all 

systems. 

8.6.2 Holidays-specific effects 

Hypothesis HT1 

The results generally support this hypothesis at 95% confidence level in all systems except 

Metro Bikeshare (p-value = 0.056); the effects of individual federal holidays on total bikeshare 

ridership in each system are different. 

Hypothesis HT2 

This hypothesis tests whether federal holidays on a weekend induce higher ridership 

compared to the same federal holiday on a weekday. To test this hypothesis, a one-sided t-test was 

conducted based on the results of the econometric model displayed in Table 8.4. New Year’s Day, 

Christmas Day, Independence Day, and Veterans Day can occasionally fall on a weekend. After 

conducting a one-sided t-test, the hypotheses are generally supported on New Year’s Day, 

Christmas Day, and Independence Day. 

8.6.3 Cherry blossom festival 

Hypothesis HN4  

After conducting a one-sided t-test, the results support the hypothesis that the Cherry 

Blossom Festival in Washington, D.C. induces higher non-member ridership on Saturdays and on 

weekdays. 
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8.7 Analysis – Individual Holiday Effects Models 

In this section, results from the holiday-specific effects models are presented with system-

level ridership level aggregated by total, member, and non-member ridership. Fifteen models are 

presented in Tables 8.4-8.6 covering the five bikeshare system and three ridership aggregation 

levels.  

8.7.1 Total trips 

The baseline models of total bikeshare trips in all five systems were estimated with 

indicator variables for individual holidays (including observed holidays and holidays on 

weekends). All other factors such as weather characteristics, time characteristics whose effects on 

bikeshare demand could be substantial were also included in the model estimations. The purpose 

of estimating these baseline models is to capture the general effects of individual holidays on 

bikeshare ridership across five systems. The statistically insignificant variables are kept in the 

models when relevant to the tested hypotheses.  

Regarding effects of federal holidays, it was found that there was a negative relationship 

between total ridership and federal holidays. The total ridership was found to be significantly lower 

than other federal holidays on New Year’s Day, Christmas Day, and Thanksgiving Day in all 

systems.  

For the weekday effects, it was found that all five systems had lower ridership on Mondays 

than Wednesdays. For other weekdays, the results show that Thursdays had positive effects on 

bikeshare trips for Metro Bikeshare, and Fridays had positive effects on ridership for Metro 

Bikeshare, Nice Ride, and Capital Bikeshare. It was found that Thursdays and Fridays had no 

effects on the other systems. The positive effects of Fridays could be due to evening trips.  
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In terms of the weekend, the results show that both Saturdays and Sundays had negative 

effects on total ridership for all systems except Nice Ride. It was found that Saturday induce higher 

total ridership in Nice Ride. Due to the equal distribution between member and non-member, the 

leisure trips which were made by non-member users on Saturday could account for this finding.  

Concerning potential seasonal effects, it was found that all systems except Capital 

Bikeshare exhibited common patterns. The results show that total ridership was lower in winter 

and spring, higher in summer, and then reduced again in fall. On the other hand, in Capital 

Bikeshare the results indicate that there is little variation in the total ridership across all four 

seasons. 

Regarding weather effects on bikeshare ridership, the total bikeshare trips decrease as 

average wind speed increases for all systems except Metro Bikeshare. It was also found that 

precipitation from rain (no snow) had negative effects on bikeshare trips in all cities. Similarly, 

the results show that as snowfall and snow depth increases, total ridership decreases in the systems 

that experience snow. For temperature effects, total ridership increased quadratically for these 

systems as the maximum temperature increased. But, once the maximum temperature reached 

approximately 85 degrees F, ridership dropped in a cubic fashion. Finally, the results show that 

maximum dewpoint has negative effects on bikeshare trips in all systems.
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Table 8.4 Log-linear regression model results of total bikeshare trips in five systems with robust standard errors 

Variable Description 

Capital Bikeshare 

Washington D.C. 

Divvy 

Chicago 

Bluebike 

Boston 

Nice Ride 

Minneapolis 

Metro Bikeshare  

Los Angeles 

Mean t-stat Mean t-stat Mean t-stat Mean t-stat Mean t-stat 

Constant 6.96 23.10 7.30 34.13 6.65 21.09 4.61 5.30 1.22 0.42 

New Year’s Day (actual days, including 

weekend) 
-0.90 -9.74 -1.25 -25.02 -0.86 -3.66 - - -0.22 -1.42 

New Year’s Day Observed (only observed days, 

Friday, or Monday) 
-0.84 -6.01 -0.64 -17.10 -0.20 -3.76 - - - - 

New Year’s Day*Weekend 0.33 3.60 0.51 8.48 0.81 3.44 - - - - 

New Year’s Eve -0.25 -2.45 -0.54 -4.07 -0.57 -4.34 - - 0.16 0.83 

Thanksgiving Day -1.10 -23.32 -1.46 -44.53 -1.38 -18.83 -1.85 -9.56 -0.53 -2.49 

Day After Thanksgiving (Black Friday) -0.55 -12.01 -0.87 -7.12 -0.93 -18.22 -0.84 -6.17 -0.27 -3.40 

Christmas Day -1.32 -21.63 -1.58 -12.70 -1.59 -8.86 - - -0.22 -1.81 

Christmas Day Observed -0.86 -31.72 -0.69 -14.10 -1.20 -23.11 - - - - 

Christmas Day*Weekend 0.45 7.58 -0.21 -1.67 0.49 2.75 - - - - 

Christmas Eve -0.89 -14.60 -1.00 -9.39 -1.02 -13.85 - - -0.27 -8.72 

Birthday of Martin Luther King -0.31 -3.91 -0.34 -2.27 -0.44 -1.77 - - -0.02 -0.31 

Memorial Day -0.11 -3.81 0.00 0.05 -0.38 -2.73 -0.08 -0.48 0.07 0.90 

Washington’s Birthday -0.18 -1.57 -0.21 -3.76 -0.28 -1.05 - - -0.19 -1.38 

Independence Day 0.02 0.33 -0.19 -2.89 -0.34 -3.93 0.26 3.86 -0.04 -0.27 

Independence Day Observed 0.00 0.13 0.28 8.68 -0.22 -6.31 0.02 0.60 - - 

Independence Day*Weekend 0.34 5.53 0.77 11.04 0.53 5.94 -0.06 -0.77 - - 

Labor Day -0.19 -5.02 -0.21 -2.34 -0.25 -4.49 0.17 2.90 -0.08 -0.93 

Columbus Day -0.10 -2.13 0.00 0.09 -0.30 -4.02 0.03 0.32 -0.11 -3.13 

Veterans Day -0.07 -1.40 -0.13 -0.56 -0.06 -1.24 0.60 1.83 -0.05 -1.80 

Veterans Day Observed 0.00 0.01 0.03 0.24 -0.04 -0.46 -0.11 -0.45 -0.04 -0.72 

Veterans Day*Weekend 0.07 0.78 -0.19 -0.83 -0.01 -0.25 -1.74 -8.53 0.05 0.51 

Good Friday 0.00 0.04 -0.11 -0.94 0.03 0.49 -0.03 -0.32 -0.04 -0.79 

Cherry Blossom Festival Saturday 0.20 3.87 - - - - - - - - 
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Cherry Blossom Festival Weekday 0.03 1.38 - - - - - - - - 

Monday -0.02 -1.56 -0.04 -2.08 -0.06 -2.24 -0.07 -2.91 -0.03 -1.67 

Tuesday 0.01 1.08 0.00 0.17 -0.02 -0.79 -0.01 -0.36 0.02 1.02 

Thursday 0.01 0.90 0.00 0.09 0.01 0.38 0.01 0.27 0.04 2.50 

Friday 0.04 3.21 0.01 0.29 -0.02 -0.85 0.11 4.15 0.07 4.22 

Saturday -0.09 -5.68 -0.31 -12.18 -0.37 -12.52 0.18 7.37 -0.08 -3.98 

Sunday -0.22 -13.23 -0.44 -16.40 -0.52 -17.75 -0.02 -0.66 -0.14 -5.19 

Average wind speed  -0.01 -7.56 -0.02 -7.44 -0.02 -7.11 -0.01 -5.78 0.00 -0.74 

Rainfall indicator  -0.06 -4.79 -0.13 -6.79 -0.08 -4.19 -0.09 -4.83 -0.02 -0.51 

Precipitation due to rain (inches) -0.59 -9.86 -0.35 -6.36 -0.72 -9.24 -0.42 -7.02 -1.44 -5.42 

Quadratic effects of rainfall 0.10 3.36 0.01 0.47 0.17 4.01 0.07 2.81 0.72 3.92 

Snowfall indicator -0.08 -0.72 -0.04 -0.88 -0.06 -0.69 -0.13 -1.14 - - 

Snowfall (inches) -0.28 -2.36 -0.08 -4.70 -0.21 -5.33 -0.18 -4.32 - - 

Snow Depth (inches) -0.14 -3.58 -0.05 -7.97 - - -0.18 -9.67 - - 

Maximum temperature (in Fahrenheit) 0.00 -0.11 0.04 3.95 0.07 5.89 -0.01 -0.21 0.17 1.55 

Quadratic effects of maximum temperature ÷ 100 0.00 3.16 0.00 -0.30 0.00 -2.64 0.00 2.06 0.00 -1.25 

Cubic effects of maximum temperature ÷ 10,000 0.00 -4.95 0.00 -0.97 0.00 0.72 0.00 -3.22 0.00 0.95 

3-day moving average of maximum temperature 

÷ 100 
0.00 2.96 0.00 3.51 0.01 3.45 0.01 3.43 0.00 0.24 

30-day moving average of maximum temperature 

÷ 10 
0.01 7.08 0.01 4.12 0.00 1.10 0.01 4.54 0.00 1.37 

Maximum dewpoint (°F) ÷ 10 -0.01 -9.11 -0.01 -7.58 -0.01 -4.51 -0.01 -9.41 0.00 -1.74 

Number of Observation 2917 1826 1704 1727 975 

R-Squared 0.8464 0.9057 0.8951 0.8685 0.6546 

Adjusted R-Squared 0.8431 0.9028 0.8916 0.8650 0.6379 

Durbin Watson's Test 1.6114 1.4055 0.9168 1.3784 1.2043 

MAPE 0.1715 0.2053 0.2400 0.2092 0.1233 

Note: Year and Month Indicator Variables are excluded from this table but were included in the model estimation. 

- Indicates that the variable is not included in the respective model 
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8.7.2 Member and non-member trips 

New Year’s Day and Independence Day on the weekend generally induces higher total and 

member ridership but lower non-members ridership. For Labor Day, total and member ridership 

mostly exhibit negative effects whereas non-members exhibit positive effects. Memorial Day was 

found to be statistically significant for both member and non-member trips but displayed opposite 

effects. Member trips were lower on Memorial Day in all five systems, but higher for non-member 

trips. These findings may reflect that non-members use this holiday for leisure trips. On the other 

hand, Memorial Day is a high observance holiday and therefore, members are not commuting. The 

results show that the ridership was lower on Thanksgiving Day for total and member but are mixed 

for non-member ridership. These findings reflect the fact that members are the predominant 

percentage of the bikeshare population. Therefore, breaking down member and non-member trips 

is crucial for understanding which type of users are using the bikeshare system on these special 

days. 

For the effects of Independence Day, it was found that both the actual day and the observed 

day generally display mixed effects on total trips. However, the effects of these days showed 

clearer patterns when broken down into member and non-member trips. There was a significant 

negative relationship between Independence Day (for both actual and observed days) and member 

trips. For non-member, there was a significant positive relationship except for Bluebike on 

observed Independence Day. 

A non-federal holiday, such as the day after Thanksgiving (Black Friday) generally has 

lower ridership for both members and non-members. But, for non-members in Washington D.C., 

there is increased ridership on Black Friday. Generally, Good Friday exhibits no effect on 

bikeshare ridership. 
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There is significantly higher ridership during the Cherry Blossom Festival in Washington, 

D.C. on Saturday for both member and non-members. It could be because this is a large annual 

event that attracts both residents and tourists. But, on the weekdays during this event, members 

show no increase in ridership. This may propose that on the weekday, members are using the 

bikeshare system to go to work, rather than leisure activities. Conversely, non-member ridership 

is high on the weekday of this festival. This may be that these non-members are tourists.  

The results in Table 8.5 and Table 8.6 show that on Fridays, Saturdays and Sundays, 

member trips were lower compared to Wednesdays, while non-member trips were higher. This 

could reflect the findings of lower total ridership on Fridays and weekends because members 

dominate the bikeshare culture. However, in Nice Ride, since the member and non-member trips 

share an even distribution amongst the system, total ridership was higher on the weekend.
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Table 8.5 Log-linear regression model results of member bikeshare trips in five systems with robust standard errors 

Variable Description 

Capital Bikeshare 

Washington D.C. 

Divvy  

Chicago 

Bluebike  

Boston 

Nice Ride 

Minneapolis 

Metro Bikeshare  

Los Angeles 

Mean t-stat Mean t-stat Mean t-stat Mean t-stat Mean t-stat 

Constant 6.88 24.98 7.07 37.73 6.83 21.41 4.11 4.76 2.37 0.81 

New Year’s Day (actual days, including 

weekend) 
-1.14 -15.46 -1.38 -25.12 -0.96 -4.74 - - -0.94 -4.27 

New Year’s Day Observed (only observed days, 

Friday, or Monday) 
-0.90 -7.90 -0.78 -25.15 -0.33 -5.91 - - - - 

New Year’s Day*Weekend 0.46 6.32 0.68 11.15 0.82 4.10 - - - - 

New Year’s Eve -0.33 -4.30 -0.53 -3.27 -0.63 -3.99 - - -0.13 -0.64 

Thanksgiving Day -1.44 -43.36 -1.74 -47.90 -1.50 -22.09 -2.36 -11.70 -0.91 -8.47 

Day After Thanksgiving (Black Friday) -0.87 -26.30 -1.02 -12.40 -1.00 -16.14 -1.02 -6.84 -0.53 -3.13 

Christmas Day -1.77 -24.93 -1.96 -32.65 -1.64 -6.22 - - -0.93 -3.83 

Christmas Day Observed -1.20 -43.81 -0.94 -21.13 -1.25 -22.39 - - - - 

Christmas Day*Weekend 0.35 5.08 0.34 5.71 0.45 1.72 - - - - 

Christmas Eve -0.97 -14.63 -1.00 -11.02 -1.01 -12.41 - - -0.33 -3.46 

Birthday of Martin Luther King -0.41 -5.29 -0.40 -2.64 -0.50 -2.11 - - -0.15 -1.14 

Memorial Day -0.47 -14.49 -0.48 -11.81 -0.52 -2.75 -0.62 -3.99 -0.33 -2.30 

Washington’s Birthday -0.34 -3.02 -0.28 -6.37 -0.34 -1.16 - - -0.38 -6.92 

Independence Day -0.35 -7.66 -0.65 -12.27 -0.82 -7.77 -0.29 -4.10 -0.45 -3.73 

Independence Day Observed -0.42 -18.08 -0.35 -13.33 0.00 -0.03 -0.42 -15.81 - - 

Independence Day*Weekend 0.33 5.98 0.56 10.03 1.44 13.08 0.22 2.96 - - 

Labor Day -0.49 -16.03 -0.70 -11.73 -0.43 -5.24 -0.47 -4.51 -0.47 -2.79 

Columbus Day -0.21 -4.99 -0.09 -1.90 -0.33 -4.49 0.01 0.15 -0.11 -3.81 

Veterans Day -0.12 -2.11 -0.15 -0.59 -0.09 -1.14 0.58 1.78 -0.05 -1.62 

Veterans Day Observed -0.07 -2.36 -0.03 -0.29 -0.05 -0.52 -0.41 -1.71 -0.27 -2.86 

Veterans Day*Weekend 0.12 1.56 -0.08 -0.29 0.02 0.26 -2.18 -10.58 -0.07 -0.31 

Good Friday -0.08 -2.06 -0.16 -1.70 -0.01 -0.14 -0.08 -0.95 -0.05 -0.46 

Cherry Blossom Festival Saturday 0.09 2.22 - - - - - - - - 
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Cherry Blossom Festival Weekday 0.02 1.36 - - - - - - - - 

Monday -0.05 -3.48 -0.06 -3.54 -0.07 -2.28 -0.08 -3.50 -0.04 -1.85 

Tuesday 0.01 0.70 0.00 0.14 -0.03 -0.87 0.00 -0.18 0.00 -0.19 

Thursday 0.01 0.34 -0.01 -0.48 0.01 0.33 -0.01 -0.60 0.02 1.05 

Friday -0.01 -0.49 -0.05 -3.01 -0.05 -1.53 -0.03 -1.21 -0.02 -0.97 

Saturday -0.34 -22.74 -0.60 -31.08 -0.53 -17.03 -0.40 -16.95 -0.44 -17.08 

Sunday -0.46 -30.61 -0.73 -35.67 -0.66 -21.73 -0.49 -21.76 -0.49 -15.24 

Number of Observation 2917 1826 1704 1727 975 

R-Squared 0.8436 0.9234 0.8745 0.8619 0.6756 

Adjusted R-Squared 0.8403 0.9209 0.8703 0.8582 0.6599 

Durbin Watson's Test 1.5550 1.4332 0.7834 1.093 0.7622 

MAPE 0.1590 0.1603 0.2605 0.1999 0.1599 

Note: Weather, year, and month variables are excluded from this table but were included in the model estimation. 

- Indicates that the variable is not included in the respective model 
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Table 8.6 Log-linear regression model results of non-member bikeshare trips in five systems with robust standard errors  

Variable Description 

Capital Bikeshare 

Washington D.C. 
Divvy Chicago 

Bluebike  

Boston 

Nice Ride 

Minneapolis 

Metro Bikeshare  

Los Angeles 

Mean t-stat Mean t-stat Mean t-stat Mean t-stat Mean t-stat 

Constant 1.78 4.12 3.65 13.82 1.28 2.43 2.63 3.24 -1.83 -0.30 

New Year’s Day (actual days, including weekend) 0.56 4.49 0.40 3.31 -0.35 -0.70 - - 0.77 9.14 

New Year’s Day Observed (only observed days, 

Friday, or Monday) 
-0.29 -1.14 0.55 8.87 1.11 13.26 - - - - 

New Year’s Day*Weekend -0.63 -4.97 -0.28 -2.15 1.33 2.65 - - - - 

New Year’s Eve 0.52 2.19 -0.02 -0.08 0.02 0.09 - - 0.64 3.68 

Thanksgiving Day 0.36 3.92 0.23 2.16 -0.47 -1.49 -1.28 -6.66 0.03 0.07 

Day After Thanksgiving (Black Friday) 0.69 8.54 0.01 0.02 -0.35 -1.69 -1.12 -7.50 0.06 0.22 

Christmas Day 0.52 3.53 0.23 1.02 -1.44 -2.40 - - 0.76 4.07 

Christmas Day Observed 0.71 15.40 1.09 14.34 -0.62 -7.16 - - - - 

Christmas Day*Weekend -0.26 -1.75 -2.24 -9.77 0.88 1.47 - - - - 

Christmas Eve -0.23 -1.26 -0.45 -1.21 -0.82 -3.65 - - -0.12 -0.72 

Birthday of Martin Luther King 0.49 3.50 -0.31 -1.75 0.12 0.28 - - 0.32 3.27 

Memorial Day 0.73 13.01 1.05 8.76 0.14 0.64 0.60 3.17 0.80 11.87 

Washington’s Birthday 0.85 4.62 0.03 0.12 0.32 1.43 - - 0.21 0.50 

Independence Day 0.96 12.33 0.84 5.68 0.73 7.95 0.86 9.25 0.55 2.68 

Independence Day Observed 0.83 19.43 0.85 18.18 -1.00 -15.05 0.19 5.14 - - 

Independence Day*Weekend -0.13 -1.39 -0.57 -3.73 -2.25 -20.59 -0.82 -8.35 - - 

Labor Day 0.72 9.68 0.94 7.18 0.53 1.79 0.96 12.45 0.55 2.80 

Columbus Day 0.41 3.79 0.53 7.72 0.02 0.15 0.05 0.33 -0.08 -0.78 

Veterans Day 0.29 3.36 -0.14 -0.82 0.23 0.72 0.83 2.79 -0.09 -1.51 

Veterans Day Observed 0.56 8.51 -0.07 -0.19 0.12 1.02 0.85 3.93 0.49 10.36 

Veterans Day*Weekend -0.02 -0.14 0.05 0.21 0.07 0.23 -1.42 -7.25 0.29 4.22 

Good Friday 0.29 3.40 0.36 1.45 0.34 1.45 0.20 1.75 0.03 0.27 

Cherry Blossom Festival Saturday 0.30 3.55 - - - - - - - - 
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Cherry Blossom Festival Weekday 0.14 3.68 - - - - - - - - 

Monday 0.15 5.00 0.15 4.49 -0.02 -0.36 -0.02 -0.43 0.00 -0.12 

Tuesday 0.05 1.66 0.03 0.87 0.00 -0.05 0.01 0.34 0.07 1.86 

Thursday 0.09 3.44 0.12 3.61 0.07 1.34 0.06 1.92 0.10 2.59 

Friday 0.36 13.41 0.46 13.88 0.21 4.22 0.40 11.34 0.30 7.99 

Saturday 0.94 33.01 0.98 25.94 0.41 7.51 0.93 28.75 0.56 14.11 

Sunday 0.79 27.02 0.80 19.35 0.19 3.42 0.64 18.69 0.50 12.50 

Number of Observation 2916 1826 1698 1727 975 

R-Squared 0.8851 0.9422 0.8598 0.8877 0.6072 

Adjusted R-Squared 0.8826 0.9404 0.8551 0.8847 0.5881 

Durbin Watson's Test 1.3087 1.5097 1.029 1.3091 0.8747 

MAPE 0.3150 0.3614 0.508 0.3031 0.2684 

Note: Weather, year, and month variables are excluded from this table but were included in the model estimation. 

- Indicates that the variable is not included in the respective model 
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8.7.3 Individual holiday effects summary 
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Figure 8.2 Holiday-specific expected ridership ratios by bikeshare system  
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A summary of total, member, and non-member ridership during federal and non-work 

holidays across five systems in chronological order is presented in Figure 8.2. It appears that 

holidays-specific ridership effects are seasonal for non-member trips. Holidays during the spring 

and summer months, such as Independence Day and Labor Day, display higher expected ridership 

ratios compared to the cooler months. For total and member ridership, these ridership ratios are 

generally negative, but warmer month holiday effects still tend to be higher than the cooler months.  

 

8.8 Conclusions and Recommendations 

This study primarily focused on exploring the impacts of holidays on daily bikeshare 

ridership of five U.S. bikeshare systems. Compared to prior literature reviewed in this chapter, the 

findings of this study are more spatially and temporally robust as this study considers holiday 

effects over multiple years and across multiple locations. Log-linear regression models were 

estimated to infer the impacts of holidays on total, member, and non-member bikeshare trips across 

hypotheses. 

Similar to prior studies, it was found that total system-level ridership tends to decrease on 

federal holidays compared to comparable non-holidays. But when accounting for heterogeneity in 

user types, it is observed that non-member riders take more trips on federal holidays while 

members take fewer trips. To address the differences in ridership patterns between holidays and 

weekends, this study found support that both federal holidays and weekends share similar effects 

on ridership, but the direction of the effects are controlled by user types. It is seen that member 

ridership is lower on federal holidays and weekends while non-member ridership is higher.  

The study generally found that the effects of total and member ridership on holidays were 

negative while non-member ridership was positive. But the magnitude of the effects varies based 
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on the individual holidays. Thanksgiving and Christmas, for example, experience lower total 

ridership than Memorial Day and Labor Day. This study also found that the total system-level 

ridership is likely to increase on federal holiday on a weekend compared to the same federal 

holiday on a weekday. Lastly, it was found that holidays with higher observance by businesses 

resulted in lower member-level ridership which could be due to less commuting-based trips.  

These findings on bikeshare ridership patterns during special calendar days have 

implications for the management of bikeshare systems, local economies, and public health. 

Because of increased non-member ridership on holidays, municipalities and bikeshare systems can 

concentrate information and advertising campaigns around non-users on holidays. Also, offering 

a differing ticketing structure, such as reducing the cost of an annual bikeshare pass if one 

subscribes on a holiday may increase bikeshare ridership on holidays. Local restaurants can aid in 

this effort by offering discounts or other special offers during holidays if a user rides bikeshare to 

the restaurant. Efforts to increase public awareness and experience with bikeshare systems during 

holidays may lead to improved public health and additional system membership. The general trip 

patterns of bikeshare systems, which induce shorter trips and slower travel speeds, can increase 

local business activity, and encourage local patronage in locations with bikeshare. Lastly, the 

results of this study can aid bikeshare systems in developing general system-level pre-and 

repositioning efforts and for determining maintenance and cleaning schedules.  

Future work could examine bikeshare ridership on holidays at the station-level. Analyzing 

holiday effects at the station-level could aid in understanding where users are traveling which 

could broaden the understanding of travel behavior patterns on these days. Future work may also 

explore additional bikeshare systems to strengthen hypothesis results further. 
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One of the limitations in this study is that although most of the Durbin Watson test statistics 

show little autocorrelation, some systems show positive autocorrelation, especially for the non-

member models. Analyzing systems with the same model specifications result in more comparable 

results across five systems. Although some of the models show autocorrelation, to have consistent 

and comparable results, the same model specifications were used across all five systems. To 

account for possible autocorrelation, autoregressive integrated moving average (ARIMA) model 

could be used. 

In terms of special events, it was found that the Cherry Blossom Festival induces higher 

ridership for both members and non-members in Washington D.C. But there is very limited 

research on the effects of special events on bikeshare system ridership. There is no theoretical 

framework to explain which events are expected to impact bikeshare usage. The authors analyzed 

other special events, but these were not included in this chapter to conserve space. Using the 

Managing Travel for Planned Special Events Handbook (Latoski et al., 2003) to characterize 

special events, it was found that event operation characteristics impact special event bikeshare 

ridership. Park-based events had more positive effects on ridership than street-based events. Multi-

day events generally showed increases in ridership compared to single day events, and national 

events contributed to the highest bikeshare numbers. In general, festivals have higher impacts on 

bikeshare ridership compared to other event types. The National Cherry Blossom Festival – being 

both a national event and a festival – had increased ridership across all bikeshare users’ types. 

Future work could seek to build and expand a testable framework using event characteristics to 

explore these impacts. These characteristics could include proximity to bikeshare stations, level of 

outdoor involvement, the size of the event space/area, event time span, and the distribution of 

attendees’ time use. This future work could be useful to urban planners and civic leaders in the 
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consideration of road closures and other traffic changes to ensure pedestrian safety on these special 

days. Corral services can be offered during high bikeshare volume events to reduce the stress of 

parking and encourage other active modes. Lastly, planning future events to market to encourage 

greater member usage could increase bikeshare ridership success.  

For special event selection, future work can also include analyzing data at the microscopic 

level. Qualitative study, including interviews, focus group, ethnographies, and surveys, may help 

to extract the types of special events that are highly correlated to bikeshare usage. This can be done 

for non-registered users as well to understand bikeshare ridership during special events. Future 

work could also seek to build a testable framework using event characteristics and machine 

learning techniques to explore these impacts. 
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Chapter 9 
 

Comprehensive Analysis of Leisure Activity Variety as an 

Instrumental Outcome of Social Capital 
 

Trang Loung, Michael Maness 

9.1 Introduction 

The need for travel is often perceived as demand derived from participation in various activities. 

From an activity-travel perspective, most trips are categorized by purpose such as mandatory, 

maintenance or discretionary/leisure travel. Leisure activities and their induced travel are 

differentiated by their voluntary and often social nature. Leisure activity is often informed by, 

motivated by, and performed with connections within an individual’s social network. Measuring 

and modeling social and socially motivated activity have increasingly been recognized within the 

transportation research community as important for understanding leisure activity behavior. 

Gathering evidence of the linkage between social networks and activity generation, Kim et al. 

(2018) reviewed transportation studies that analyzed the impacts of individuals’ social network 

characteristics on the frequency of social activity participation across three measures: 

▪ Network size (Carrasco et al., 2008; Carrasco and Miller, 2006; Sharmeen et al., 2014; 

Van den Berg et al., 2009, 2010, 2015) 

▪ Relationship type (Carrasco et al., 2008; Carrasco and Miller, 2006; Sharmeen et al., 

2014; Van den Berg et al., 2009, 2012; Carrasco and Miller, 2009; Frei and Axhausen, 

2008) 

▪ Tie strength (Carrasco et al., 2008; Carrasco and Miller, 2006; Sharmeen et al., 2014; 

Frei and Axhausen, 2008; Van den Berg et al., 2012) 
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Regarding network size, more frequent activity participation was associated with larger networks. 

Regarding relationship type, there was no clear consensus on its impact on ego-alter activity 

frequency due to varying methodologies and classification schemes. Regarding tie strength, 

several studies asked specifically about whether respondents had strong, medium, or weak ties 

with their alters. Each study found that higher social activity frequency was generated by stronger 

ties. Among those considerations of social relationships, there is a lack of a cohesive theory linking 

social network characteristics to leisure activity outcomes (Parady et al., 2019): 

“Although several studies have analysed leisure activity generation, and the 

relationship between social network and social interactions, to date there is no 

well-established and validated theory on the nature of this relation, hence most 

studies, including the present one, are of an exploratory nature.” (p. 546) 

 

Maness (2017b) attempted to develop such a theory inductively through social tie 

generation principles (Kadushin, 2012). Maness theorized that larger strong-tie networks and 

weak-tie diversification increases activity variety and frequency. More specifically, strong ties 

were hypothesized to increase activity frequency due to similarity in interests. The weak-ties role 

in expanding one’s social circle allows for diversification in activities and status-seeking behavior 

thus leading to greater activity variety. Using a name generator for strong-tie characteristics and a 

position generator for weak-tie characteristics, the theory was supported by improved model fit. 

Maness’ study, however, was restrained by survey data with a limited activity space as well as 

lacking mobility data and direct measures of accessible resources (Maness, 2017). 

To address the limitations of a coherent theory linking social network characteristics to 

leisure activity outcomes, this chapter aims to further develop a social capital theory of leisure 
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activity behavior. Lin’s conception of individual-level social capital provides a schema which links 

the concepts of network characteristics (size, density, range, structural holes) with access to 

socially embedded resources that result in purposive outcomes. The research proposes that such a 

schema can potentially serve to link prior research in activity-travel behavior on the impacts of 

social networks on leisure activity behavior. 

This study examines a sample’s access to social capital and its association with the leisure 

activity outcome of activity diversity. This research proposed two research questions to test this 

social capital theory of leisure activity behavior:  

1. Do individuals with greater social capital (i.e. access to social resources) have greater 

diversity in their leisure activities?  

2. Does instrumental support play a more significant role than expressive support in 

enabling different leisure activity participation, thus suggesting that activity variety is 

an instrumental outcome rather than an expressive outcome? 

This study aims to answers those questions using insights gathered from a self-

administered web-based survey designed specifically to test differences in social capital and its 

relevance in a leisure activity context. 

9.2 Literature Review 

This section starts by highlighting transportation research on leisure activity, then describes 

the interpretation of how social capital is defined as benefits from embedded social resources and 

concludes by providing linkages between leisure activity behavior and social capital. 

9.2.1 Leisure activity outcomes 

Leisure was categorized as activities encompassing social, recreational, physical, and 

cultural events that are not bounded by work or maintenance tasks (Ettema and Schwanen, 2012). 
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As leisure activity engagement offers considerable benefits for personal wellbeing and social 

connections, the 2018 American Time Use Survey conducted by the US Bureau of Labor Statistics 

revealed that Americans spent an average of 5.27 hours on daily leisure activities compared to 

only 3.57 work hours. Stauffacher et al. (2015) surveyed the diversity of leisure activities and the 

different contributing motives for increasing activity variety. Calastri et al. (2020) examined the 

influence of social relationship strength on leisure activity participation. 

9.2.2 Social capital as access to resources 

The concept of social capital describes how individuals acquire beneficial assets and 

services through social interactions. Among various definitions of social capital, Lin’s formulation 

of social capital as embedded social resources has a strong methodological synergy in activity-

travel behavior since it aligns well with the individual-level basis of most activity and travel 

research. Specifically, Lin (2001) proposes three primary elements of social capital: a) resource 

embeddedness in social networks, b) resource accessibility, and c) resource use for action-oriented 

aspects. Lin further defines three processes involved in the creation and use of social capital: a) 

investment in social capital, b) access to and mobilization of social capital, and c) returns of social 

capital. 

Häuberer’s (2011) schema (Figure 9.1) clarifies Lin’s theory of the three processes and 

thus provides causal relationships between preconditions, social capital, and outcomes. Individuals 

are preconditioned in a societal context and have access to individually owned resources and 

assets. Access to social resources is mobilized through social networks and their structural 

properties. Smaller, denser networks help maintain social connections and promote continued 

access to group resources through trust and reciprocation. This leads to more resources for 

expressive actions and subsequently, capitalization of expressive outcomes. Lin classifies 
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expressive outcomes as mental health, physical health, and life satisfaction. In contrast, larger, 

wider social networks enable new contacts but results in less intimate social support (Lin 2001). 

These diverse, lower-maintenance connections can broaden access to new resources for profit or 

influential gain and lead to more resources for instrumental action. Lin classifies instrumental 

outcomes as wealth, power, and status (Lin 2001). 

 

 

Figure 9.1 Conceptual diagram of social capital and outcomes – adapted from Häuberer (2011) 

 

To operationalize Lin’s conception of social capital as socially embedded resources in an 

activity-travel context, activity behavior is considered as returns of social capital. Hence, aspects 

of activity behavior must be described as instrumental or expressive outcomes (or combinations 

thereof). As a starting point, suppose leisure activity behavior is described through the variety of 

activity types participated in and the frequency at which someone participates in those activities. 
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As instrumental actions focus on acquiring new connections and resources from social interactions, 

leisure activity behavior that enables these actions will be described as instrumental leisure activity 

outcomes. Seeking out new connections is seen as a form of social tie creation due to brokerage 

and status seeking. This enables access to resources from people outside of one’s own social 

circles, often through participating in the interests of those people and their extended networks. 

Subsequently, an individual may need to expand their activity space to participate in different 

activities to reap instrumental benefits. An expanded activity space increases participation in a 

greater variety of activity types, since the individual would participate in both their preferred 

activities and their weak/loose social ties’ preferred activities. Additionally, as information flow is 

enabled through brokerage over weak ties, the individual’s knowledge of new activities increases 

through their instrumental actions. 

9.2.3 Theory of leisure activity variety as an instrumental outcome 

Carrasco and Cid-Aguayo (2012) and Maness (2017a) attempt to link social capital to 

activity behavior through measuring social network characteristics. Parady et al. (2019) also links 

network size and club membership to social activity variety. Their efforts have, however, been 

limited by an unclear linkage between social resources and leisure activity preferences. By using 

Lin’s social capital concept with the ability to measure structural and mobilized resources, the 

effects of leisure activity for enabling expressive and instrumental outcomes could be explored. 

9.2.4 Conceptualization of leisure activity variety as an instrumental outcome 

Numerous studies have attempted to understand leisure behavior for its beneficial impacts 

on individuals, households, and society (Lloyd and Auld, 2002). Characterized by a voluntary and 

social nature, leisure activities are often enabled by interpersonal relationships. Even activities that 

can be performed individually in solitude such as playing guitar, reading fiction, or working 
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puzzles can be more enjoyable when joined by others. Our research interprets Lin’s social capital 

definition in an activity context and hence, conceptualizes leisure activity as the capitalization of 

social resources. Lin specified wealth, power, and social status as three instrumental elements that 

can be mobilized from the investments in social networks. 

While leisure activities can be perceived as personal hobbies without connections to one’s 

instrumental benefits, this study proposes and tests the theory that leisure variety (e.g. a collection 

of unique leisure activities) exemplifies instrumental outcome and is achieved by instrumental 

resources embedded in one’s social network. When an individual’s leisure behavior encompasses 

a wide range of social, recreational, entertainment activities, this variety of leisure activity extends 

beyond personal hobbies and can be an indicator of wealth, power, and status. Wealth can be 

attained through the creation of new connections and richness in information, opportunities, and 

idea exchange. One’s affluence can also be manifested as the accumulation of pleasures, 

enjoyments, and self-improvement that were missing from work or maintenance tasks. Leisure 

activities that offer positive experience can also enhance individuals’ productivity and earning 

potential (Lyubomirshy et al., 2005). 

According to Tinsley and Eldredge (1995), service-based leisure activities can offer power 

to people who have a sense of responsibility to help, comfort, or inspire others. Sports can 

particularly empower individuals for gratifying one’s desire to overcome challenge. Many social 

activities such as attending church, dancing, dining out, visiting friends and family promote 

attention and feeling of importance. One can particularly enhance their social status by 

coordinating leisure activities with others. 
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9.2.5 Measuring social capital and social resource access 

Lin (2001) suggests measuring social capital as resources (assets) in social networks. A 

simplified approach to enumerate the instrumental and expressive resources embedded in a social 

network would involve asking individuals about their social contacts and each contacts’ available 

resources. Called the name generator approach, this is the primary technique used in transportation 

studies of social capital (Kim et al., 2018). While the name generator approach provides extensive, 

detailed information, it has practical limitations in data collection due to respondent burden and 

contact recall biases. Additionally, there are concerns about its sensitivity to survey mode, 

particularly in self-administered formats (Joye et al., 2019). 

The position generator technique primarily measures access to instrumental support that 

can help to attain wealth, power, and status. This approach focuses on hierarchal measures of 

people’s access to resources by relating them with their contacts’ societal positions. The disparities 

in resource allocation across many societies are attributable to societal hierarchies. Generally, 

those with higher societal position have more resources and can create new connections more 

easily (Lin, 2001). To determine instrumental connections, the position generator relies on the 

tendency of societies to associate occupations with prestige and status. The position generator 

measures a person’s ties with individuals across various occupations – which have varying levels 

of prestige and status across society. A position generator is a list of various occupations for 

respondents to indicate whether they have individuals in their social network with those 

occupations. Thus, the position generator can provide an indirect measure of social capital access 

and specifically focuses on instrumental resources.  

The resource generator approach combines the name generator/interpreter and position 

generator to directly measure social resource access. Using a list of specific resources, “the 
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resource generator asks if [respondents] would have anyone to turn to should they need to access 

one or more of a range of resources” (Crossley et al., 2015: p. 49). This enables the resource 

generator flexibility in answering a range of research questions. This is particularly important since 

all social capital is not equivalent and cannot be mobilized for all purposes. Van der Gaag and 

Snijders’ resource generator surveyed in the Netherlands identified four types of social resources: 

personal support, political/financial skills, personal skills, and prestigious/educational related 

social capital (Van der Gaag and Snijders, 2005). Additionally, since the resources are specific, 

resource generators can also directly measure differences between instrumental and expressive 

resource access.  

By combining the position generator and resource generator approaches, an individual’s 

social integration and network range can be measured alongside his or her “concrete resources 

available through social relations” (Joye et al., 2019: p. 23). Joye and colleagues explain that: 

“considering social networks and the social resources embedded in them in the form proposed here 

is a way to escape from an individualistic survey perspective and to defend the perspective of ‘life 

in context’, the context being the network of relations with family or friends but also the society 

in which the individual is living” (pp. 11-12). 

9.3 Hypotheses 

To test the proposed theory of leisure activity variety as an instrumental outcome, this 

research explores the following hypotheses: 

1. Individuals with greater social capital (i.e. greater access to social resources) participate 

in more types of leisure activities than those with less social capital. 

2. Activity diversity is primarily an instrumental outcome in a social capital process with 

greater reliance on instrumental resource than expressive outcomes. 
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9.4 Survey Design and Social Capital Measures 

9.4.1 Data collection 

A cross-sectional survey was designed to better understand social factors influencing the 

leisure activity participation. The survey design and administrations are outlined in Table 9.1. 

Table 9.1 also describes the selection of three different survey distributing platforms to ensure a 

qualified and diverse group of respondents. As participants from Amazon Mechanical Turk 

(MTurk) were younger and less female than the Qualtrics panel, an equal gender quota was set for 

the Qualtrics panel and the survey was also distributed to 118 female participants in the Prolific 

platform. Responses were rejected if the respondents spent less than five minutes on the survey or 

had substantial missing or inconsistent/invalid answers. 

The survey consists of sections on activity space, social capital, mobility/accessibility, 

individual and household characteristics. The activity space section of the survey asks about: 1) 

leisure activity variety and frequency, 2) household mandatory and maintenance activities, and 3) 

work and school demand. 

Table 9.1 Survey methodology summary 

Characteristic Description 

Survey name Leisure Activity and Social Resources Survey 

Time frame November - December 2019 

Target population US adults aged 18 years and older 

Sampling frame Qualtrics Panels: Adults with internet in an internet-based survey panel 

Prolific: Women with internet in an internet-based survey panel 

Amazon MTurk: Registered US MTurk workers with task approval rates > 90% and at 

least 100 approved tasks 

Recruitment Qualtrics Panels: Email recruitment with varied incentive unknown to researchers 

Prolific and MTurk: Advertised task with $3.00 incentive  

Sample size 1,297 responses after data cleaning 

Sample design Non-probability samples with quota-based (gender, age) for Qualtrics Panels and 

Prolific, and no quota for MTurk 

Sampling source Qualtrics Panel (46% of the data), MTurk (46%), and Prolific (8%) 

Administration mode Self-administered via the internet 

Time dimension Cross-sectional survey 

Level of observations Individual, household 
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9.4.2 Leisure activity variety 

Survey respondents were presented an activity list and asked to choose the specific 

activities they participated in over the last three months. Leisure activity variety was asked using 

a list of 86 unique activity types. Adopted from Tinsley and Eldredge, 77 out of their 82 activities 

were adopted, while arcade games, collecting bottles, shortwave radio listening, volunteering for 

crisis intervention, and watching television were excluded due to being outdated, dependent on 

specific crisis events, or overabundance (Tinsley and Eldredge, 1995). Nine additional leisure 

activities were added including: attending festivals and parades, board gaming, joyriding, 

gambling, gardening in community gardens, softball, singing karaoke, video games, and visiting 

amusement/theme parks. The list of 86 activities was presented across four pages. Activities that 

are similar such as hiking and backpacking were listed adjacently to reduce the likelihood of 

inaccurate counts. 

9.4.3 Social capital measures 

Instrumental Support 

As outlined in previous section, this study utilized a position generator to measure the 

instrumental support of social capital. To maintain comparability with the 2004 Social Capital 

Surveys described in Lin et al. (2013), a list of 22 occupations for the position generator was 

applied in this survey to measure access to instrumental social resources. Respondents were asked 

to indicate if they personally knew someone (a relative, friend, or acquaintance) on a first-name 

basis with that occupation. Each occupation also has a prestige score determined by the Standard 

International Occupational Prestige Scale that was later used to calculate each occupation’s 
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prestige/status (Lin and Ao, 2008). The list of 22 occupations is reported in decreasing order of 

prestige score [in brackets] but were presented to respondents randomly ordered: 

1. Professor [78] 

2. Lawyer [73] 

3. Chief Executive Officer [70] 

4. Congressman or Congresswoman [64] 

5. Production manager [63] 

6. Middle school teacher [60] 

7. Personnel manager [60] 

8. Writer [58] 

9. Nurse [54] 

10. Computer programmer [51] 

11. Bookkeeper [49] 

12. Administrative assistant in a large company [49] 

13. Police officer [40] 

14. Farmer [38] 

15. Receptionist [38] 

16. Operator in a factory [34] 

17. Hairdresser [32] 

18. Taxi driver [31] 

19. Security guard [30] 

20. Full-time babysitter or nanny [23] 

21. Janitor [21] 

22. Hotel bellhop [20] 

In order to comprehensively assess individual’s access to instrumental support, principal 

component analysis was applied on three measures of position generator (network occupational 

volume, highest reach, and range of reach) to derive a network occupational composite score. In 

particular, the first metric, the network occupational volume, is the sum of all different occupations 

a respondent knew in his or her social network on a first name basis. The network occupational 

volume was normalized by dividing the sum by the maximum number of known occupations, 

which is 22 based on the given list of position generator. Second, network occupational highest 

reach is the highest prestige score of all occupations reached in social network. The network 

occupational highest reach was also normalized by dividing the highest prestige score by 78, which 

is the prestige score for a professor. About 41% of the survey respondents reported knowing a 
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professor. Third, network occupational range of reach is defined as the difference between the 

maximum and minimum prestige scores of the occupations reached in social network. The network 

occupational range of reach was also normalized by dividing the range of prestige score by 58, 

which is the difference between the most prestigious occupation and the least prestigious 

occupation in the given list. About 12% of survey respondents knew no one or only one occupation, 

which resulted in a range of zero. Subsequently, network occupational composite score was 

computed as the sum of the principal rotations for the three aforementioned measures as follows:  

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑐𝑜𝑟𝑒 = (0.42 ∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑠 + 

0.54 ∗ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑟𝑒𝑠𝑡𝑖𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 +  0.73 ∗ 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑡𝑖𝑔𝑒 𝑠𝑐𝑜𝑟𝑒𝑠) 

Expressive Support 

In order to measure the availability of resources that individuals can access through their 

social network; an 11-item resource generator proposed by Joye et al. (2019) was included in the 

questionnaire. Survey respondents were advised: “This section is about who you would turn to for 

help, if you needed it, in different situations. For each situation, please choose who you would turn 

to first for help. (If there are several people you are equally likely to turn to, please choose the one 

who you feel is closest to you).” Joye et al. (2019) defined three dimensions of social support that 

can be offered by immediate family, other family member, close friend, neighbor, someone I work 

with, other friend or acquaintance, or no one: 

Practical support: 

a. Help you for a household or a garden job that you can’t do yourself 

b. Help you around the house if you were sick and had to stay in bed for a few days 

c. Look after you if you were seriously ill 

Informational support: 

d. Help you with finding a job 

e. Help you with finding a new place to live 

f. Help you look for information about a serious personal health issue 
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g. Help you if you needed advice on administrative formalities and on other legal matters 

Emotional support:  

h. Be there if you felt a bit down or depressed and wanted to talk about it 

i. Give you advice on family problems 

j. Make you feel appreciated for who you really are 

k. Be there if you just wanted to talk about your day 

To further account for the emotional support provided by an individual’s core network size, 

respondents were asked: “From time to time, most people discuss important matters with other 

people. Looking back over the last three months, think about the people whom you discussed 

matters that are important to you. How many people were you able to recall?” This core network 

size (counted as the number of people who they discussed important matters over the last three 

months) was a generalized version of Burt’s name generator in the General Social Survey (Burt, 

1984). Using the confirmatory factor analysis described in Joye et al. (2019), three latent variables 

of social support were obtained from the list of 11 items as follows: 

𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙 𝑠𝑢𝑝𝑝𝑜𝑟𝑡           = 1.000𝑎 + 1.002𝑏 + 0.899𝑐 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1.000𝑑 + 0.967𝑒 + 0.954𝑓 + 0.925𝑔 

𝐸𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑢𝑝𝑝𝑜𝑟𝑡         = 1.000ℎ + 1.127𝑖 + 1.182𝑗 + 0.845𝑘 

Subsequently, the expressive social support offered by social network was computed based on the 

three latent dimensions of social support and the core network size as follows: 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = (1.000 ∗ 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙 + 1.458 ∗ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 

1.025 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 + 0.501 ∗ 𝑐𝑜𝑟𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑧𝑒) 

The two indicators for instrumental and expressive support were subsequently used as explanatory 

variables in models estimating the number of unique leisure activities. 
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9.5 Data Descriptions 

Survey respondents reported participating in between zero and 56 different activities over 

the last three months (Figure 9.2). About 50% of respondents participated in between 5 and 15 

different activities over the three-month period. 

 

Figure 9.2 Activity variety distribution 

Survey correspondence was recorded after participants accepted the survey consent and 

met the quota on gender and age. After data cleaning, descriptive statistics of variables used in 

regression models and characteristics of 1,297 survey respondents are provided in Tables 9.2 and 

9.3.  
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Table 9.2 Descriptive statistics of model variables (N=1,297) 

Variable Description Min Max Mean SD 

Number of different activity types 0 56 14.6 8.1 

Social Capital Measures 

Network occupational composite 0 1 0.57 0.24 

Social support composite 0 1 0.86 0.20 

Sociodemographic Attributes     

Having a driver license and at least one motorized vehicle in the 

household  
0 1 0.88 0.33 

Having no driver license and no access to public transit  0 1 0.01 0.10 

Having a disability or illness affecting the ability to travel 0 1 0.07 0.26 

Personality score for being extraverted 0 7 3.53 1.64 

Personality score for being open to experience 0 7 4.91 1.35 

Age of respondents 19 91 46.91 16.90 

Having a bachelor’s degree 0 1 0.55 0.50 

Median income (in $1,000) 0 275 73.20 55.60 

Identified as white  0 1 0.82 0.38 

Widowed marital status  0 1 0.04 0.20 

Female respondent  0 1 0.50 0.50 

Hours spent on cooking and chores per week 0 80 9.42 7.95 

Work hours per week 0 100 26.68 19.44 

Sampled from Prolific panel  0 1 0.08 0.28 

Sampled from Qualtrics panel  0 1 0.46 0.50 
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Table 9.3 Descriptive statistics of sample characteristics (N=1,297) 

Age Mean 46.9 

 Median 44.0 

 Standard deviation 16.9 

Education Less than high school 0.7% 

 High school graduate/GED 12.2% 

 Some college, no degree 18.4% 

 Associate degree 9.5% 

 Bachelor's degree 35.4% 

 Graduate degree 19.6% 

Employment Full-time 57.0% 

 Part-time 12.7% 

 Retired 15.9% 

 Student (not employed for pay) 1.9% 

 Disabled (not employed for pay) 2.9% 

 Not employed for pay 6.7% 

Gender Female 50.3% 

 Male 49.2% 

Household income Under $15,000 5.5% 

 $15,000–$24,999 9.6% 

 $25,000–$34,999 10.6% 

 $35,000–$49,999 16.0% 

 $50,000–$74,999 22.3% 

 $75,000–$99,999 14.1% 

 $100,000–$149,999 12.5% 

 $150,000–$199,999 4.9% 

 $200,000–$249,999 2.2% 

 $250,000 or more 2.0% 

Household size One person 22.2% 

 Two people 38.2% 

 Three or more people 39.6% 

Marital status Married/domestic partnership 48.1% 

 Widowed 4.0% 

 Divorced 9.6% 

 Separated 1.0% 

 Living with a partner 7.2% 

 Never been married 29.8% 

Race/ethnicity American Indian or Alaska Native 1.5% 

 Asian 6.9% 

 Black or African American 9.7% 

 Hispanic, Latino or Spanish origin 0.6% 

 White 82.0% 

 Other race/ethnicity 2.5% 

Household vehicles No vehicle 7.8% 

 One 37.2% 

 Two 39.1% 

 Three or more 15.7% 
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9.6 Methodology 

Activity variety is defined as the number of different leisure activities that survey 

respondents had participated in over the last three months. With a mean of 14.6 unique leisure 

activities and a standard deviation of 8.1 unique leisure activities, the over-dispersion of the data 

distribution suggests the use of negative binomial regression. The model is specified through the 

following mathematical expectation: 

𝐸(𝑦𝑛|𝑥𝑛, 𝑠𝑛, 𝑝𝑛, 𝑟𝑛) = exp(𝛽𝑥𝑛 + 𝛾𝐼𝑛 + δ𝐸𝑛)     (1) 

where 

𝑦𝑛 = activity variety for individual n, 

𝑥𝑛 = individual and household characteristics for individual n, 

𝐼𝑛 = measures of instrumental support 

𝐸𝑛 = measures of expressive support, and 

𝛽, 𝛾, 𝛿 = model parameters. 

In NB regression, an individual’s probability P(yn) of participating in yn different activities 

is defined as follows:  

𝑃(𝑦𝑛) =
Γ(1

𝛼⁄ +𝑦𝑛)

Γ(1
𝛼⁄ )𝑦𝑛!

(
1/𝛼

(1
𝛼⁄ )+𝜆𝑛

)
1/𝛼

(
𝑦𝑛

(1
𝛼⁄ )+𝜆𝑛

)
𝑦𝑛

           (2) 

where Γ(∙) is the gamma function, 𝜆𝑛 = exp(𝛽(𝑥𝑛 + 𝐼𝑛 + 𝑠𝐸𝑛) + 𝜀𝑖), and 𝑒𝑥𝑝 (𝜀𝑛) is a Gamma-

distributed disturbance term with unit mean and variance given by the dispersion parameter 𝛼. 

Model parameters were estimated using quasi-maximum likelihood estimation using the MASS 

package in R. 
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9.7 Estimation Results 

In order to distinguish the impacts of social capital and individual/household characteristics 

on leisure activity variety, model estimation results of a non-social model and models with social 

capital measures are presented in this section. The variables used in the estimated negative 

binomial models are summarized in Table 9.4 and sample characteristics’ influence on activity 

variety outcome are provided in Table 9.4. Eleven respondents with missing data were excluded 

in the model. 

The non-social model was used as the base to compare the significant improvement of 

activity variety model’s prediction capability. The likelihood ratio test substantiates the hypothesis 

that social capital are strong determinants in higher variety of leisure activity outcome. 

Specifically, while the non-social model captures a wide range of socio-demographics, household, 

and mobility characteristics in predicting a number of different activities, the model converged at 

-4,186. Likelihood ratio tests for model with social capital measures showed significant model fit. 

Random-parameter models were tested for the unobserved heterogeneity of these social capital 

measures, but no significant likelihood improvement suggested the use of fixed-parameter models. 

As this study hypothesized that leisure activity variety was primarily an instrumental 

outcome of a social capital process, quasi-likelihood ratio tests were performed, and the results 

show support for the hypothesis that higher social capital correlates with higher leisure activity 

variety. 
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Table 9.4 Negative binomial model estimation results of activity variety 

Parameter description [units] 

Nonsocial model Model with social capital 

Mean 

estimate 

Standard 

error 

Mean 

estimate 

Standard 

error 

Marginal 

effect 

Social Capital Measures: 

Network occupational volume* ─ ─ 0.646 0.059 8.96 

Social support composite* ─ ─ 0.222 0.071 3.07 

Other Attributes: 

Licensed driver with vehicle availability in the 

household indicator 0.085 0.045 0.075 0.043 1.01 

Non-driver with no access to public transit 

indicator 
-0.241 0.140 -0.159 0.135 -2.04 

Having disability to travel indicator -0.067 0.054 -0.089 0.052 -1.19 

Personality score for extraversion 0.022 0.008 0.009 0.008 0.12 

Square of personality score for openness to 

experience 
0.007 0.001 0.006 0.001 0.08 

Age of respondents [year] -0.004 0.001 -0.004 0.001 -0.06 

Having bachelor’s degree indicator 0.098 0.029 0.057 0.028 0.78 

Square root of median income [$1,000] 0.006 0.005 0.001 0.005 0.01 

Identified as white indicator 0.039 0.036 0.041 0.034 0.56 

Widowed indicator -0.104 0.075 -0.105 0.071 -1.39 

Female respondent indicator -0.027 0.061 -0.064 0.058 -0.89 

Weekly cooking and chores time [10h] 0.381 0.090 0.344 0.086 4.77 

Weekly cooking and chores time for women 

[10h] 
-0.187 0.099 -0.157 0.095 -2.18 

Square of weekly cooking and chores time 

[(10h)2] 
-0.129 0.035 -0.123 0.034 -1.71 

Square of weekly cooking and chores time for 

women [(10h)2] 
0.111 0.036 0.105 0.034 1.46 

Weekly work time [40h] 0.029 0.033 -0.019 0.031 -0.27 

Sampled from Qualtrics panel indicator -0.096 0.052 -0.277 0.035 -3.81 

Sampled from Prolific indicator -0.299 0.037 -0.120 0.050 -1.58 

Intercept 2.357 0.088 1.997 0.100 N/A 

Dispersion parameter 6.649 0.386 7.852 0.482 N/A 

Model Statistics: 

Number of parameters 20 22 

Log likelihood at convergence -4,185.7 -4,112.8 

Number of observations 1,286 1,286 

Note: * = normalized measure with values [0,1]; bold numbers = estimate p-value ≤ 0.05 

 

9.8 Results 

Social Capital Measures 

For equivalent comparisons of the social resource effects, the two social measures were 

normalized as a ratio of reported values distance from the minimum value to the value’s range; 
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this results in a value of zero at the minimum observed value and one at the maximum observed 

value. Both social capital indicators had statistically significant and strong positive effects on 

activity variety. The models with instrumental social capital and expressive social support had 

significantly greater model fit than the non-social models, thus supporting the hypothesis of social 

capital’s conducive effect on an individual’s leisure activity participation. Compared to the 

indicator of expressive resources, the instrumental measures had the greatest normalized impact. 

A respondent with maximal instrumental social capital had an expected increase in activity variety 

of 91% more than someone with minimal instrumental social capital. As the network occupational 

composite score accounted for the volume, range, and highest occupation known in a person’s 

network, this score has the biggest influence on activity variety and contributed to the most 

significantly improved model fit. The strongest effect derived from position generator attested the 

hypothesis that leisure activity variety (being more an instrumental than expressive outcome) could 

be enabled through broader instrumental support. Regarding the expressive resources offered by 

social network, a respondent with maximal expressive social support experienced about 25% more 

activity variety than those with minimal expressive social support. 

Mobility Impacts 

Mobility was hypothesized to have a positive relationship with leisure activity participation 

due to increasing the size of an individual’s activity space. Licensed driver with in-home 

automobile availability had significantly increased activities variety. In contrast, non-drivers with 

no access to public transportation had decreased activity variety. Although the activity list had 

many activities that did not require travel, people who self-reported travel-limiting disabilities or 

illnesses were also restricted in their activity space. These effects were as expected since auto 

availability/usage provided greater mobility, and thus increased out-of-home activity variety.  
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Personality Types 

To account for concerns with endogeneity of social capital due to differences in social 

personality (12), personality types were included in the analysis. In particular, openness to 

experience was the personality type that exhibited the strongest potential effect on activity variety. 

It was expected that people who are more extraverted may be more inclined to participate in 

socially oriented leisure activities. All models demonstrated by positive and significant effects of 

higher scores on being extraverted as well as open to experience and increased activity variety. 

Based on the Ten-Item Personality Inventory proposed by Gosling et al. (2003) included in this 

survey, respondents with high score on extraversion showed much smaller impacts of only 0.009 

relative to the social capital measures. Computed from the same personality inventory(Gosling et 

al., 2003), respondents who agreed that they were “open to new experiences, complex” and 

disagreed on being “conventional, uncreative” had a significant correlation with increase in more 

diverse activities. Being open to experience was considered having a non-linear effect on activity 

outcome. 

Sociodemographic Attributes  

Age had a significantly negative effect on individuals’ variety of activities. Individuals who 

earned a bachelor’s degree or higher participated in higher activity variety. Education can be seen 

as an indicator of cultural capital (Joye et al., 2019) with the expectation that higher cultural capital 

would be correlated with higher activity variety. Regarding marital status, widowed respondents 

experienced reduced activity variety which may be attributed to other life changes beyond 

accessible social support. While increasing disposable income was hypothesized to expand the 

activities space, the income effect was found to be positive but statistically insignificant. Minority 

groups were not found to have significantly less activity variety than whites. Other socio-
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demographic factors, such as the number of workers and children in the household, were also 

tested (not included in presented models) but did not have significant effects on activity variety. 

 Gender-based impacts were found to be insignificant for the gender fixed-effect. But the 

analysis found that the impact of housework varied between genders. It was hypothesized that 

greater levels of housework would reduce the available time to participate in leisure activities and 

could therefore reduce leisure activity variety. this relationship was found to hold generally for 

men above about 28 to 30 hours of housework, under a quadratic formulation. But for the women 

surveyed, a decrease in leisure activity variety was not found for throughout the observed range of 

housework hours. 

Survey Administration Mode Effects 

Finally, results show that respondents in the Prolific and Qualtrics panels reported less 

activity variety than Mechanical Turk. It is unclear what unobservable factors caused this 

differentiation between samples but perhaps related to differing participation motivations/needs. 

9.9 Conclusion 

A comprehensive analysis was conducted to explore the impacts of social capital on leisure 

activity behavior – particularly activity variety. A social capital theory of activity behavior was 

presented two hypotheses that 1) social capital is an integral determinant of leisure activity 

participation, and 2) having access to instrumental social support promotes instrumental outcomes 

demonstrated by increased in more leisure activity variety. This theory contributes to the limited 

understanding of activity and travel behavior using social capital concepts discussed by Lin (2001), 

Häuberer (2011), and Joye et al. (2019). There have been a few studies accounted for social capital 

influence on leisure activity participation.  
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This study has also been one of the first attempts to shed deeper insights on a wide range 

of leisure activities adopted from Tinsley and Eldredge (1995) instead of a small number of 

common activities. A refined survey was then designed to obtain an extensive collection of leisure 

activities, social capital measures as well as mobility and sociodemographic characteristics. All of 

these factors were tested by numerous estimations of count data regression to extract the most 

significant determinants. Among the variables that have positive correlations with activity variety, 

social capital measures significantly improved the model fit and have the strongest effects on 

increasing more diverse activities. Thus, including social capital consideration on an individual’s 

activity space will both help to unravel the unobserved heterogeneity across similar socioeconomic 

groups and reduce the biases as demonstrated in the non-social model. Instrumental support 

measured by the position and resource generators indeed had the largest influence on predicting 

activity variety outcome. The core network size and accessible expressive resources resulted in 

considerable explaining power, besides the sampling source effect. Several traditional 

sociodemographic attributes, such as race, gender, and employment status became insignificant or 

have negligible effects on activity variety after accounting for social network’s role in activity 

participation. The addition of mobility indicators and personality traits were also essential to better 

predictions of increased numbers of unique leisure activities. The positive correlation of household 

auto availability with increased out-of-home activities demonstrates the need to assess the effect 

of alternative modes of transportation on activity participation. 

This work contributes to a growing interest of considering the effects of social network 

characteristics on activity-travel behavior. As social capital has distinct impacts even among 

homogeneous groups, transportation modelers can derive more refined characteristics from social 

capital measures to build more socially and behaviorally realistic models. 
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The results of this empirical study may not be representative of the larger population due 

to the nonprobability sampling technique. In addition, the self-administrative nature of the survey 

can amplify the lack of attention or accuracy, which was mitigated during the survey refinement 

and data validation process. To capture missing activities due to incomplete recollection, an 

activity diary with detailed temporal and spatial information would provide a more complete 

picture of each activity as well as its transportation components. Endogenous effects of people 

who participate in different activities to create more connections and subsequently enrich their 

social capital are difficult to disentangle from a cross-sectional survey. 

Subsequently, future work can focus on examining the causal effects of social capital, 

mobility, and activity participation. From another perspective, individuals may report the same 

number of different leisure activities but those sets of activities may emerge from distinct social 

and psychological motives. More analysis can be conducted to measure the impacts of social 

capital on various aspects of each activity because leisure activities may or may not be conducive 

to a person’s social interactions (e.g. visiting friends vs. reading books). 

Furthermore, since this study focuses on operationalize instrumental outcomes, the next 

immediate step would be to explore expressive outcomes as the mobilization of expressive social 

support. As expressive outcomes are essential to strengthening mental wellbeing, physical health, 

and life satisfaction, the impact of leisure activities that can be conducted with no travel or personal 

interaction requirements is an emerging need given the concerns of public health and lack of access 

to public venue 
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Conclusions and Policy Implications 

Several critical issues have emerged in recent years in the fields of highway safety, 

alternative transportation modes, and activity and travel behavior modeling. The Chapter 2 of this 

report addressed highway safety, where issues relating to big data, traditional data and the tradeoffs 

between prediction and causality in highway-safety analysis. The analysis of highway accident 

data is largely dominated by traditional statistical methods (standard regression-based approaches), 

advanced statistical methods (such as models that account for unobserved heterogeneity), and data-

driven methods (artificial intelligence, neural networks, machine learning, and so on). These 

methods have been applied mostly using data from observed crashes, but this can create a problem 

in uncovering causality since individuals that are inherently riskier than the population as a whole 

may be over-represented in the data. In addition, when and where individuals choose to drive could 

affect data analyses that use real-time data since the population of observed drivers could change 

over time. This issue, the nature of the data, and the implementation target of the analysis imply 

that analysts must often tradeoff the predictive capability of the resulting analysis and its ability to 

uncover the underlying causal nature of crash-contributing factors. The selection of the data-

analysis method is often made without full consideration of this tradeoff, even though there are 

potentially important implications for the development of safety countermeasures and policies. 

This chapter shows the issues involved in this tradeoff with regard to specific methodological 

alternatives and presents researchers with a better understanding of the trade-offs often being 

inherently made in their analysis. 

Chapter 3 addressed issues related to the recent growth in the popularity of mobility-on-

demand (ridehailing), which has substantially disrupted the transportation market by providing a 

variety of new transportation options. The chapter presented a statistical model of individuals’ 
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usage rates of ridehailing services. Using a sample of recently collected data, a mixed logit model 

(multinomial logit model with random parameters) of ridehailing-usage rate was estimated and, in 

addition to traditional socio-demographic factors, several travel and health-related variables were 

found to play statistically significant roles for ridehailing usage. Specifically, age, gender, income, 

household size, vehicle ownership, typical parking time, and the nature of commutes were some 

of the significant variables found in model estimation results. In addition, self-assessed health, 

high body mass index, and registration for other shared mobility services were all found to play 

roles in ridehailing usage. The results suggest that ridehailing usage tends to be driven by a wide 

variety of individual characteristics and lifestyle choices. 

Chapter 4 considered the emerging phenomena of carsharing and specifically the renting 

of personal vehicles (peer-to-peer carsharing), which has become increasingly popular in the U.S. 

The chapter studied the attitudes, perceptions, and decision process through which individuals 

decide to offer their car for rent in such peer-to-peer carsharing. A stated preference survey was 

designed and disseminated where survey respondents were asked how likely they would be to rent 

their car (extremely unlikely, unlikely, unsure, likely, extremely likely). The survey questionnaire 

also collected detailed socio-demographic information, as well as data on travel behavior and 

travel patterns. These data were then used to estimate a random parameters ordered probit model 

of their likelihood of renting their car. Some of the variables found statistically significant 

determinants of the willingness to rent a personal vehicle were gender, age, income, household 

composition, vehicle ownership, living location with respect to a grocery store, and participation 

in other shared mobility modes. These findings and especially the gender and income related 

variables were found to complement prior literature and offered additional layer of understanding 

of the factors determining the supply side of peer-to-peer carsharing. 
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Chapter 5 turned to the area of safety, modeling issues relating to aggressive driving, which 

has become a national traffic-safety concern. Looking at single-vehicle crashes, this study 

investigates differences between resulting crash-injury severities when aggressive and non-

aggressive driving behavior is observed, and how these differences changed over time by 

estimating random parameters multinomial logit models with unobserved heterogeneity in means 

and variances. Model estimates show that there were significant differences in driver-injury 

severities resulting from aggressive and non-aggressive driving, and that the effect of factors that 

determine injury severities changed significantly over time (statistically significant temporal 

instability). However, it is noteworthy that crashes involving non-aggressive drivers had many 

explanatory variables that produced temporally stable marginal effects, whereas crashes involving 

aggressive drivers had only one such variable (restraint belt usage). Importantly, this suggests the 

possibility that temporal instability found in many recent safety studies may be driven by a subset 

of the crash population, and that there may be temporal stability in many crashes. 

Chapter 6 continued the safety emphasis by looking at issues relating to work zone safety, 

a critical issue with likely nationwide infrastructure initiatives. Using Florida work zone data from 

the 2012 to 2017 time period, resulting driver-injury severities in single-vehicle work zone crashes 

were studied by estimating random parameters logit models that allow for possible heterogeneity 

in the means and variances of parameter estimates. The model estimates produced significantly 

different parameters for each of the year from 2012 to 2017, and a fundamental shift in unobserved 

heterogeneity, suggesting statistically significant temporal instability. In addition, in several key 

instances, the marginal effects of individual parameter estimates show marked differences between 

one year and the next. However, these findings may not be the sole result of variations in driver 

behavior over time as has been argued in past research that has found temporal instability. This is 
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because each work zone has a unique set of characteristics and, with the sample of work zones 

changing from one year to the next as highway maintenance and construction is undertaken in 

different locations, this work-zone sample variation could be a substantial source of the observed 

temporal instability. 

Chapter 7 shifted to the behavioral analysis of the zero-price effect phenomenon. Prior 

research has shown that a short-term free public charging program could possibly increase plug-

in electric vehicle sales, decrease oil consumption, and decrease greenhouse gas emissions. To 

deepen the understanding of consumer behavior relating to free charging, this research analyzed 

the zero-price effect to estimate a monetary value of free charging. To arrive at accurate estimation, 

data from stated preference survey were used to estimate latent class models of attribute non-

attendance. The values calculated via different computations methods were then compared. The 

national mean zero-price effect for public charging ranged from $0.95 to $1.40 across the models. 

Because the collected sample was correctly weighted and national representativeness was 

achieved, the findings from this work can help to assess policies which offer free public charging 

infrastructure. 

Chapter 8 provided an analysis of bikeshare behavior during holidays. Existing literature 

showed mixed results relating to the ridership impacts of holidays, as some research showed that 

these days may result in higher ridership, while others showed no effect. To control for these 

aspects, this chapter used a multi-city study of the effect of holidays on system-level ridership 

using a log-linear regression model with robust standard errors. The results showed the impacts of 

holidays on bikeshare system ridership for different user types among systems in the Washington 

DC, Chicago, Boston, Los Angeles, and Minneapolis metro areas. Several hypotheses were built 

and tested for examining the expected effects of holidays on bikeshare usage. A major finding 
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from this chapter is that federal holidays negatively affect member ridership and positively affect 

non-member ridership. It was also found that different federal holidays have dissimilar effects on 

total ridership. 

Finally, in Chapter 9, social capital was explored in relation to leisure activity behavior. 

Motivated by the influence of social capital on leisure activity behavior, this chapter proposed a 

theory that leisure activity variety is an instrumental outcome and thus mostly affected by 

instrumental social resources. The theory underlined two hypotheses that 1) social capital is an 

integral determinant of leisure activity participation, and 2) having access to instrumental social 

support promotes instrumental outcomes demonstrated by increased leisure activity variety. This 

theory was comprehensively tested on the number of different unique leisure activities collected 

from 1,297 survey respondents. This refined and specially designed survey is the first in the 

transportation literature to use both position generator and resource generator to measure social 

capital. Results from negative binomial regression models demonstrated that instrumental support 

indeed had the largest influence on predicting activity variety outcome. This chapter showed that 

as social capital has distinct impacts even among homogeneous groups, transportation modelers 

can derive insights from social capital measures to build more socially and behaviorally realistic 

models. 

By addressing critical contemporary modeling issues, this report provides practical insights 

into several emerging modeling issues in the transportation field. The insights provided herein can 

form the basis for effective transportation policies relating to highway safety, the effectiveness of 

ridehailing as a mode of travel, peer to peer car sharing, electric vehicle adoption, bikesharing, and 

the impact of social capital on travel decisions. 
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